1,075 research outputs found

    The Cosmic Microwave Background and the Ionization History of the Universe

    Full text link
    Details of how the primordial plasma recombined and how the universe later reionized are currently somewhat uncertain. This uncertainty can restrict the accuracy of cosmological parameter measurements from the Cosmic Microwave Background (CMB). More positively, future CMB data can be used to constrain the ionization history using observations. We first discuss how current uncertainties in the recombination history impact parameter constraints, and show how suitable parameterizations can be used to obtain unbiased parameter estimates from future data. Some parameters can be constrained robustly, however there is clear motivation to model recombination more accurately with quantified errors. We then discuss constraints on the ionization fraction binned in redshift during reionization. Perfect CMB polarization data could in principle distinguish different histories that have the same optical depth. We discuss how well the Planck satellite may be able to constrain the ionization history, and show the currently very weak constraints from WMAP three-year data.Comment: Changes to match MNRAS accepted versio

    A detail study of defect models for cosmic structure formation

    Get PDF
    We calculate predictions from wide class of `active' models of cosmic structure formation which allows us to scan the space of possible defect models. We calculate the linear cold dark matter power spectrum and Cosmic Microwave Background (CMB) anisotropies over all observable scales using a full linear Einstein-Boltzmann code. Our main result, which has already been reported, points to a serious problem reconciling the observed amplitude of the large-scale galaxy distribution with the COBE normalization. Here, we describe our methods and results in detail. The problem is present for a wide range of defect parameters, which can be used to represent potential differences among defect models, as well as possible systematic numerical errors. We explicitly examine the impact of varying the defect model parameters and we show how the results substantiate these conclusions. The standard scaling defect models are in serious conflict with the current data, and we show how attempts to resolve the problem by considering non-scaling defects or modified stress-energy components would require radical departures from what has become the standard picture.Comment: 37 Pages; References updated and minor typos correcte

    f(R) as a dark energy fluid

    Full text link
    We study the equations for the evolution of cosmological perturbations in f(R)f\left(\mathcal{R}\right) and conclude that this modified gravity model can be expressed as a dark energy fluid at background and linearised perturbation order. By eliminating the extra scalar degree of freedom known to be present in such theories, we are able to characterise the evolution of the perturbations in the scalar sector in terms of equations of state for the entropy perturbation and anisotropic stress which are written in terms of the density and velocity perturbations of the dark energy fluid and those in the matter, or the metric perturbations. We also do the same in the much simpler vector and tensor sectors. In order to illustrate the simplicity of this formulation, we numerically evolve perturbations in a small number of cases.Comment: 12 pages, 5 figure

    Small-angle anisotropies in the CMBR from active sources

    Get PDF
    We consider the effects of photon diffusion on the small-angle microwave background anisotropies due to active source models. We find that fluctuations created just before the time of last scattering allow anisotropy to be created on scales much smaller than allowed by standard Silk damping. Using simple models for string and texture structure functions as examples, we illustrate the differences in the angular power spectrum at scales of order a few arcminutes. In particular, we find that the Doppler peak heights are modified by 10-50% and the small-angle fall-off is power law rather than exponential

    Rigidity and stability of cold dark solid universe model

    Full text link
    Observational evidence suggests that the large scale dynamics of the universe is presently dominated by dark energy, meaning a non-luminous cosmological constituent with a negative value of the pressure to density ratio w=P/ρw=P/\rho, which would be unstable if purely fluid, but could be stable if effectively solid with sufficient rigidity. It was suggested by Bucher and Spergel that such a solid constituent might be constituted by an effectively cold (meaning approximately static) distribution of cosmic strings with w=1/3w=-1/3, or membranes with the observationally more favoured value w=2/3w=-2/3, but it was not established whether the rigidity in such models actually would be sufficient for stabilisation. The present article provides an explicit evaluation of the rigidity to density ratio, which is shown to be given in both string and membrane cases by μ/ρ=4/15\mu/\rho=4/15, and it is confirmed that this is indeed sufficient for stabilisation.Comment: 6 pages latex, revised version extended to include 4 figure

    Cosmological tensor perturbations in the Randall-Sundrum model: evolution in the near-brane limit

    Full text link
    We discuss the evolution of cosmological tensor perturbations in the RSII model. In Gaussian normal coordinates the wave equation is non-separable, so we use the near-brane limit to perform the separation and study the evolution of perturbations. Massive excitations, which may also mix, decay outside the horizon which could lead to some novel cosmological signatures.Comment: 18 pages, 1 figur

    On the origin of dark matter axions

    Get PDF
    We discuss the possible sources of dark matter axions in the early universe. In the standard thermal scenario, an axion string network forms at the Peccei-Quinn phase transition T\sim \fa and then radiatively decays into a cosmological background of axions; to be the dark matter, these axions must have a mass \ma \sim 100 \mu eV with specified large uncertainties. An inflationary phase with a reheat temperature below the PQ-scale T_{reh} \lapp \fa can also produce axion strings through quantum fluctuations, provided that the Hubble parameter during inflation is large H_1 \gapp \fa; this case again implies a dark matter axion mass \ma \sim 100 \mu eV. For a smaller Hubble parameter during inflation H_1 \lapp \fa, `anthropic tuning' allows dark matter axions to have any mass in a huge range below \ma\lapp 1 meV.Comment: to be published in the proceedings of the 5th IFT Workshop on Axion

    Radio and optical orientations of galaxies

    Full text link
    We investigate the correlations between optical and radio isophotal position angles for 14302 SDSS galaxies with rr magnitudes brighter than 18 and which have been associated with extended FIRST radio sources. We identify two separate populations of galaxies using the colour, concentration and their principal components. Surprisingly strong statistical alignments are found: late-type galaxies are overwhelmingly biased towards a position angle differences of 00^{\circ} and early-type galaxies to 9090^{\circ}. The late-type alignment can be easily understood in terms of the standard picture in which the radio emission is intimately related to areas of recent star-formation. In early-type galaxies the radio emission is expected to be driven by accretion on to a nuclear black hole. We argue that the observed correlation of the radio axis with the minor axis of the large-scale stellar distribution gives a fundamental insight into the structure of elliptical galaxies, for example, whether or not the nuclear kinematics are decoupled form the rest of the galaxy. Our results imply that the galaxies are oblate spheroids with their radio emission aligned with the minor axis. Remarkably the strength of the correlation of the radio major axis with the optical minor axis depends on radio loudness. Those objects with a low ratio of FIRST radio flux density to total stellar light show a strong minor axis correlation while the stronger radio sources do not. This may reflect different formation histories for the different objects and we suggest we may be seeing the different behaviour of rationally supported and non-rotationally supported ellipticals.Comment: Version to appear in MNRA
    corecore