41,060 research outputs found

    Applications of airborne remote sensing in atmospheric sciences research

    Get PDF
    This paper explores the potential for airborne remote sensing for atmospheric sciences research. Passive and active techniques from the microwave to visible bands are discussed. It is concluded that technology has progressed sufficiently in several areas that the time is right to develop and operate new remote sensing instruments for use by the community of atmospheric scientists as general purpose tools. Promising candidates include Doppler radar and lidar, infrared short range radiometry, and microwave radiometry

    The atomistic structure and energy of nascent dislocation loops

    Get PDF
    An harmonic lattice theory is used, in conjunction with Mura's theory of eigendistorsions, to study the structure and energetics of nascent dislocation loops in face-centred-cubic (FCC) crystals. An analytical expression for the activation energies of such loops is derived. The results obtained herein indicate that thermal activation of small dislocation loops is possible at high stress levels such as those found in the vicinity of a crack tip. The implications of these results in understanding phenomena such as the brittle-ductile transition are discussed

    Quasicontinuum simulation of fracture at the atomic scale

    Get PDF
    We study the problem of atomic scale fracture using the recently developed quasicontinuum method in which there is a systematic thinning of the atomic-level degrees of freedom in regions where they are not needed. Fracture is considered in two distinct settings. First, a study is made of cracks in single crystals, and second, we consider a crack advancing towards a grain boundary (GB) in its path. In the investigation of single crystal fracture, we evaluate the competition between simple cleavage and crack-tip dislocation emission. In addition, we examine the ability of analytic models to correctly predict fracture behaviour, and find that the existing analytical treatments are too restrictive in their treatment of nonlinearity near the crack tip. In the study of GB-crack interactions, we have found a number of interesting deformation mechanisms which attend the advance of the crack. These include the migration of the GB, the emission of dislocations from the GB, and deflection of the crack front along the GB itself. In each case, these mechanisms are rationalized on the basis of continuum mechanics arguments

    Quasicontinuum Models of Interfacial Structure and Deformation

    Get PDF
    Microscopic models of the interaction between grain boundaries (GBs) and both dislocations and cracks are of importance in understanding the role of microstructure in altering the mechanical properties of a material. A recently developed mixed atomistic and continuum method is extended to examine the interaction between GBs, dislocations and cracks. These calculations elucidate plausible microscopic mechanisms for these defect interactions and allow for the quantitative evaluation of critical parameters such as the stress to nucleate a dislocation at a step on a GB and the force needed to induce GB migration.Comment: RevTex, 4 pages, 4 figure

    Finite-Temperature Quasicontinuum: Molecular Dynamics without All the Atoms

    Get PDF
    Using a combination of statistical mechanics and finite-element interpolation, we develop a coarse-grained (CG) alternative to molecular dynamics (MD) for crystalline solids at constant temperature. The new approach is significantly more efficient than MD and generalizes earlier work on the quasicontinuum method. The method is validated by recovering equilibrium properties of single crystal Ni as a function of temperature. CG dynamical simulations of nanoindentation reveal a strong dependence on temperature of the critical stress to nucleate dislocations under the indenter

    Resonance tube igniter

    Get PDF
    Reasonance induced in stoichiometric mixtures of gaseous hydrogen-oxygen produces temperatures /over 1100 deg F/ high enough to cause ignition. Resonance tube phenomenon occurs when high pressure gas is forced through sonic or supersonic nozzle into short cavity. Various applications for the phenomenon are discussed

    Dislocation plasticity in thin metal films

    Get PDF
    This article describes the current level of understanding of dislocation plasticity in thin films and small structures in which the film or structure dimension plays an important role. Experimental observations of the deformation behavior of thin films, including mechanical testing as well as electron microscopy studies, will be discussed in light of theoretical models and dislocation simulations. In particular, the potential of applying strain-gradient plasticity theory to thin-film deformation is discussed. Although the results of all studies presented follow a “smaller is stronger” trend, a clear functional dependence has not yet been established

    Protein search for multiple targets on DNA

    Get PDF
    Protein-DNA interactions are crucial for all biological processes. One of the most important fundamental aspects of these interactions is the process of protein searching and recognizing specific binding sites on DNA. A large number of experimental and theoretical investigations have been devoted to uncovering the molecular description of these phenomena, but many aspects of the mechanisms of protein search for the targets on DNA remain not well understood. One of the most intriguing problems is the role of multiple targets in protein search dynamics. Using a recently developed theoretical framework we analyze this question in detail. Our method is based on a discrete-state stochastic approach that takes into account most relevant physical-chemical processes and leads to fully analytical description of all dynamic properties. Specifically, systems with two and three targets have been explicitly investigated. It is found that multiple targets in most cases accelerate the search in comparison with a single target situation. However, the acceleration is not always proportional to the number of targets. Surprisingly, there are even situations when it takes longer to find one of the multiple targets in comparison with the single target. It depends on the spatial position of the targets, distances between them, average scanning lengths of protein molecules on DNA, and the total DNA lengths. Physical-chemical explanations of observed results are presented. Our predictions are compared with experimental observations as well as with results from a continuum theory for the protein search. Extensive Monte Carlo computer simulations fully support our theoretical calculations
    • …
    corecore