377 research outputs found

    A classification (uniqueness) theorem for rotating black holes in 4D Einstein-Maxwell-dilaton theory

    Full text link
    In the present paper we prove a classification (uniqueness) theorem for stationary, asymptotically flat black hole spacetimes with connected and non-degenerate horizon in 4D Einstein-Maxwell-dilaton theory with an arbitrary dilaton coupling parameter α\alpha. We show that such black holes are uniquely specified by the length of the horizon interval, angular momentum, electric and magnetic charge and the value of the dilaton field at infinity when the dilaton coupling parameter satisfies 0α230\le \alpha^2\le3. The proof is based on the nonpositivity of the Riemann curvature operator on the space of the potentials. A generalization of the classification theorem for spacetimes with disconnected horizons is also given.Comment: 15 pages, v2 typos correcte

    Differentially rotating disks of dust

    Full text link
    We present a three-parameter family of solutions to the stationary axisymmetric Einstein equations that describe differentially rotating disks of dust. They have been constructed by generalizing the Neugebauer-Meinel solution of the problem of a rigidly rotating disk of dust. The solutions correspond to disks with angular velocities depending monotonically on the radial coordinate; both decreasing and increasing behaviour is exhibited. In general, the solutions are related mathematically to Jacobi's inversion problem and can be expressed in terms of Riemann theta functions. A particularly interesting two-parameter subfamily represents Baecklund transformations to appropriate seed solutions of the Weyl class.Comment: 14 pages, 3 figures. To appear in "General Relativity and Gravitation". Second version with minor correction

    Negative Komar Mass of Single Objects in Regular, Asymptotically Flat Spacetimes

    Full text link
    We study two types of axially symmetric, stationary and asymptotically flat spacetimes using highly accurate numerical methods. The one type contains a black hole surrounded by a perfect fluid ring and the other a rigidly rotating disc of dust surrounded by such a ring. Both types of spacetime are regular everywhere (outside of the horizon in the case of the black hole) and fulfil the requirements of the positive energy theorem. However, it is shown that both the black hole and the disc can have negative Komar mass. Furthermore, there exists a continuous transition from discs to black holes even when their Komar masses are negative.Comment: 7 pages, 2 figures, document class iopart. v2: changes made (including title) to coincide with published versio

    Dirichlet Boundary Value Problems of the Ernst Equation

    Full text link
    We demonstrate how the solution to an exterior Dirichlet boundary value problem of the axisymmetric, stationary Einstein equations can be found in terms of generalized solutions of the Backlund type. The proof that this generalization procedure is valid is given, which also proves conjectures about earlier representations of the gravitational field corresponding to rotating disks of dust in terms of Backlund type solutions.Comment: 22 pages, to appear in Phys. Rev. D, Correction of a misprint in equation (4

    OBDD-Based Representation of Interval Graphs

    Full text link
    A graph G=(V,E)G = (V,E) can be described by the characteristic function of the edge set χE\chi_E which maps a pair of binary encoded nodes to 1 iff the nodes are adjacent. Using \emph{Ordered Binary Decision Diagrams} (OBDDs) to store χE\chi_E can lead to a (hopefully) compact representation. Given the OBDD as an input, symbolic/implicit OBDD-based graph algorithms can solve optimization problems by mainly using functional operations, e.g. quantification or binary synthesis. While the OBDD representation size can not be small in general, it can be provable small for special graph classes and then also lead to fast algorithms. In this paper, we show that the OBDD size of unit interval graphs is O( V /log V )O(\ | V \ | /\log \ | V \ |) and the OBDD size of interval graphs is $O(\ | V \ | \log \ | V \ |)whichbothimproveaknownresultfromNunkesserandWoelfel(2009).Furthermore,wecanshowthatusingourvariableorderandnodelabelingforintervalgraphstheworstcaseOBDDsizeis which both improve a known result from Nunkesser and Woelfel (2009). Furthermore, we can show that using our variable order and node labeling for interval graphs the worst-case OBDD size is \Omega(\ | V \ | \log \ | V \ |).Weusethestructureoftheadjacencymatricestoprovethesebounds.Thismethodmaybeofindependentinterestandcanbeappliedtoothergraphclasses.Wealsodevelopamaximummatchingalgorithmonunitintervalgraphsusing. We use the structure of the adjacency matrices to prove these bounds. This method may be of independent interest and can be applied to other graph classes. We also develop a maximum matching algorithm on unit interval graphs using O(\log \ | V \ |)operationsandacoloringalgorithmforunitandgeneralintervalsgraphsusing operations and a coloring algorithm for unit and general intervals graphs using O(\log^2 \ | V \ |)$ operations and evaluate the algorithms empirically.Comment: 29 pages, accepted for 39th International Workshop on Graph-Theoretic Concepts 201

    On the black hole limit of rotating fluid bodies in equilibrium

    Full text link
    Recently, it was shown that the extreme Kerr black hole is the only candidate for a (Kerr) black hole limit of stationary and axisymmetric, uniformly rotating perfect fluid bodies with a zero temperature equation of state. In this paper, necessary and sufficient conditions for reaching the black hole limit are presented.Comment: 8 pages, v2: one footnote and one reference added, accepted for publication in CQ

    The chromosphere: gateway to the corona, or the purgatory of solar physics?

    Full text link
    I argue that one should attempt to understand the solar chromosphere not only for its own sake, but also if one is interested in the physics of: the corona; astrophysical dynamos; space weather; partially ionized plasmas; heliospheric UV radiation; the transition region. I outline curious observations which I personally find puzzling and deserving of attention.Comment: To appear in the proceedings of the 25th NSO Workshop "Chromospheric Structure and Dynamics. From Old Wisdom to New Insights", Memorie della Societa' Astronomica Italiana, Eds. Tritschler et a

    Dynamics of charged fluids and 1/L perturbation expansions

    Full text link
    Some features of the calculation of fluid dynamo systems in magnetohydrodynamics are studied. In the coupled set of the ordinary linear differential equations for the spherically symmetric α2\alpha^2-dynamos, the problem represented by the presence of the mixed (Robin) boundary conditions is addressed and a new treatment for it is proposed. The perturbation formalism of large-\ell expansions is shown applicable and its main technical steps are outlined.Comment: 16 p

    The Ernst equation and ergosurfaces

    Full text link
    We show that analytic solutions \mcE of the Ernst equation with non-empty zero-level-set of \Re \mcE lead to smooth ergosurfaces in space-time. In fact, the space-time metric is smooth near a "Ernst ergosurface" EfE_f if and only if \mcE is smooth near EfE_f and does not have zeros of infinite order there.Comment: 23 pages, 4 figures; misprints correcte

    Differentially rotating disks of dust: Arbitrary rotation law

    Full text link
    In this paper, solutions to the Ernst equation are investigated that depend on two real analytic functions defined on the interval [0,1]. These solutions are introduced by a suitable limiting process of Backlund transformations applied to seed solutions of the Weyl class. It turns out that this class of solutions contains the general relativistic gravitational field of an arbitrary differentially rotating disk of dust, for which a continuous transition to some Newtonian disk exists. It will be shown how for given boundary conditions (i. e. proper surface mass density or angular velocity of the disk) the gravitational field can be approximated in terms of the above solutions. Furthermore, particular examples will be discussed, including disks with a realistic profile for the angular velocity and more exotic disks possessing two spatially separated ergoregions.Comment: 23 pages, 3 figures, submitted to 'General Relativity and Gravitation
    corecore