46 research outputs found
Identification and characterization of the maize arogenate dehydrogenase gene family
In plants, the amino acids tyrosine and phenylalanine are synthesized from arogenate by arogenate dehydrogenase and arogenate dehydratase, respectively, with the relative flux to each being tightly controlled. Here the characterization of a maize opaque endosperm mutant (mto140), which also shows retarded vegetative growth, is described The opaque phenotype co-segregates with a Mutator transposon insertion in an arogenate dehydrogenase gene (zmAroDH-1) and this led to the characterization of the four-member family of maize arogenate dehydrogenase genes (zmAroDH-1âzmAroDH-4) which share highly similar sequences. A Mutator insertion at an equivalent position in AroDH-3, the most closely related family member to AroDH-1, is also associated with opaque endosperm and stunted vegetative growth phenotypes. Overlapping but differential expression patterns as well as subtle mutant effects on the accumulation of tyrosine and phenylalanine in endosperm, embryo, and leaf tissues suggest that the functional redundancy of this gene family provides metabolic plasticity for the synthesis of these important amino acids. mto140/arodh-1 seeds shows a general reduction in zein storage protein accumulation and an elevated lysine phenotype typical of other opaque endosperm mutants, but it is distinct because it does not result from quantitative or qualitative defects in the accumulation of specific zeins but rather from a disruption in amino acid biosynthesis
Identification and characterization of a Zea mays line carrying a transposon-tagged ENOD40
In Zea mays, two ENOD40 homologous were identified that show only 30% of sequence homology to each other. We identified line e40-mum1 carrying a Mu transposon inserted in ZmENOD40-1, the maize gene that has the highest homology to leguminous ENOD40. The insertion causes a dramatic reduction of the ZmENOD40-1 transcript level. Irrespective of this, homozygous e40-mum1 plants are still able to interact with mycorrhizal fungi. Furthermore, no phenotypic aberrations correlated to the presence of e40-mum1 have been identified and therefore it is suggested that Z. mays ENOD40 genes are functionally redundant despite their strikingly low homology
Plantâpathogen microevolution: Molecular basis for the origin of a fungal disease inâmaize
A new and severe disease of maize caused by a previously unknown fungal pathogen, Cochliobolus carbonum race 1, was first described in 1938. The molecular events that led to the sudden appearance of this disease are described in this paper. Resistance to C. carbonum race 1 was found to be widespread in maize and is conferred by a pair of unlinked duplicate genes, Hm1 and Hm2. Here, we demonstrate that resistance is the wild-type condition in maize. Two events, a transposon insertion in Hm1 and a deletion in Hm2, led to the loss of resistance, resulting in the origin of a new disease. None of the other plant species tested is susceptible to C. carbonum race 1, and they all possess candidate genes with high homology to Hm1 and Hm2. In sorghum and rice, these homologs map to two chromosomal regions that are syntenic with the maize Hm1 and Hm2 loci, indicating that they are related to the maize genes by vertical descent. These results suggest that the Hm-encoded resistance is of ancient origin and probably is conserved in all grasses
Cloning and characterization of the maize An1 gene.
The Anther ear1 (An1) gene product is involved in the synthesis of ent-kaurene, the first tetracyclic intermediate in the gibberellin (GA) biosynthetic pathway. Mutations causing the loss of An1 function result in a GA-responsive phenotype that includes reduced plant height, delayed maturity, and development of perfect flowers on normally pistillate ears. The an1::Mu2-891339 allele was recovered from a Mutator (Mu) F2 family. Using Mu elements as molecular probes, an An1-containing restriction fragment was identified and cloned. The identity of the cloned gene as An1 was confirmed by using a reverse genetics screen for maize families that contain a Mu element inserted into the cloned gene and then by demonstrating that the insertion causes an an1 phenotype. The predicted amino acid sequence of the An1 cDNA shares homology with plant cyclases and contains a basic N-terminal sequence that may target the An1 gene product to the chloroplast. The sequence is consistent with the predicted subcellular localization of AN1 in the chloroplast and with its biochemical role in the cyclization of geranylgeranyl pyrophosphate, a 20-carbon isoprenoid, to ent-kaurene. The semidwarfed stature of an1 mutants is in contrast with the more severely dwarfed stature of GA-responsive mutants at other loci in maize and may be caused by redundancy in this step of the GA biosynthetic pathway. DNA gel blot analysis indicated that An1 is a single-copy gene that lies entirely within the deletion of the an1-bz2-6923 mutant. However, homozygous deletion mutants accumulated ent-kaurene to 20% of the wild-type level, suggesting that the function of An1 is supplemented by an additional activity