666 research outputs found

    Parallax of PSR J1744-1134 and the Local Interstellar Medium

    Get PDF
    We present the annual trigonometric parallax of PSR J1744-1134 derived from an analysis of pulse times of arrival. The measured parallax, pi = 2.8+/-0.3 mas ranks among the most precisely determined distances to any pulsar. The parallax distance of 357+/-39 pc is over twice that derived from the dispersion measure using the Taylor & Cordes model for the Galactic electron distribution. The mean electron density in the path to the pulsar, n_e = (0.0088 +/- 0.0009) cm^{-3}, is the lowest for any disk pulsar. We have compared the n_e for PSR J1744-1134 with those for another 11 nearby pulsars with independent distance estimates. We conclude that there is a striking asymmetry in the distribution of electrons in the local interstellar medium. The electron column densities for pulsars in the third Galactic quadrant are found to be systematically higher than for those in the first. The former correlate with the position of the well known local HI cavity in quadrant three. The excess electrons within the cavity may be in the form of HII clouds marking a region of interaction between the local hot bubble and a nearby superbubble.Comment: revised version accepted for publication in ApJ Letters; reanalysis of uncertainty in parallax measure and changes to fig

    An analysis of the X-ray emission from the supernova remnant 3C397

    Get PDF
    The ASCA SIS and the ROSAT PSPC spectral data of the SNR 3C397 are analysed with a two-component non-equilibrium ionization model. Besides, the ASCA SIS0 and SIS1 spectra are also fitted simultaneously in an equilibrium case. The resulting values of the hydrogen column density yield a distance of \sim8\kpc to 3C397. It is found that the hard X-ray emission, containing S and Fe Kα\alpha lines, arises primarily from the hot component, while most of the soft emission, composed mainly of Mg, Si, Fe L lines, and continuum, is produced by the cool component. The emission measures suggest that the remnant evolves in a cloudy medium and imply that the supernova progenitor might not be a massive early-type star. The cool component is approaching ionization equilibrium. The ages estimated from the ionization parameters and dynamics are all much greater than the previous determination. We restore the X-ray maps using the ASCA SIS data and compare them with the ROSAT HRI and the NRAO VLA Sky Survey (NVSS) 20 cm maps. The morphology with two bright concentrations suggests a bipolar remnant encountering a denser medium in the west.Comment: 20 pages, aasms4.sty, 3 figures To appear in ApJ (1999

    X-Ray Observations of the supernova remnant G21.5-0.9

    Full text link
    We present the analysis of archival X-ray observations of the supernova remnant (SNR) G21.5-0.9. Based on its morphology and spectral properties, G21.5-0.9 has been classified as a Crab-like SNR. In their early analysis of the CHANDRA calibration data, Slane et al. (2000) discovered a low-surface-brightness, extended emission. They interpreted this component as the blast wave formed in the supernova (SN) explosion. In this paper, we present the CHANDRA analysis using a total exposure of ~150 ksec. We also include ROSAT and ASCA observations. Our analysis indicates that the extended emission is non-thermal -- a result in agreement with XMM observations. The entire remnant of radius ~ 2'.5 is best fitted with a power law model with a photon index steepening away from the center. The total unabsorbed flux in the 0.5-10 keV is 1.1E-10 erg/cm2/s with an 85% contribution from the 40" radius inner core. Timing analysis of the High-Resolution Camera (HRC) data failed to detect any pulsations. We put a 16% upper limit on the pulsed fraction. We derive the physical parameters of the putative pulsar and compare them with those of other plerions (such as the Crab and 3C 58). G21.5-0.9 remains the only plerion whose size in X-rays is bigger than in the radio. Deep radio observations will address this puzzle.Comment: 23 pages including 11 figures and 3 tables; accepted by ApJ June 22, 2001; to appear in Oct 20, 2001 issue of Ap

    Ultraviolet Imaging Polarimetry of the Large Magellanic Cloud. II. Models

    Get PDF
    Motivated by new sounding-rocket wide-field polarimetric images of the Large Magellanic Cloud, we have used a three-dimensional Monte Carlo radiation transfer code to investigate the escape of near-ultraviolet photons from young stellar associations embedded within a disk of dusty material (i.e. a galaxy). As photons propagate through the disk, they may be scattered or absorbed by dust. Scattered photons are polarized and tracked until they escape to be observed; absorbed photons heat the dust, which radiates isotropically in the far-infrared, where the galaxy is optically thin. The code produces four output images: near- UV and far-IR flux, and near-UV images in the linear Stokes parameters Q and U. From these images we construct simulated UV polarization maps of the LMC. We use these maps to place constraints on the star + dust geometry of the LMC and the optical properties of its dust grains. By tuning the model input parameters to produce maps that match the observed polarization maps, we derive information about the inclination of the LMC disk to the plane of the sky, and about the scattering phase function g. We compute a grid of models with i = 28 deg., 36 deg., and 45 deg., and g = 0.64, 0.70, 0.77, 0.83, and 0.90. The model which best reproduces the observed polarization maps has i = 36 +2/-5 degrees and g ~0.7. Because of the low signal-to-noise in the data, we cannot place firm constraints on the value of g. The highly inclined models do not match the observed centro-symmetric polarization patterns around bright OB associations, or the distribution of polarization values. Our models approximately reproduce the observed ultraviolet photopolarimetry of the western side of the LMC; however, the output images depend on many input parameters and are nonunique.Comment: Accepted to AJ. 20 pages, 7 figure

    Waste Tank Safety Program. Annual status report for FY 1993, Task 3: Organic chemistry

    Get PDF
    This task supports the tank-vapor project, mainly by providing organic analytical support and by analyzing Tank 241-C-103 (Tank C-103) vapor-space samples, collected via SUMMA{trademark} canisters, by gas chromatography (GC) and GC/mass spectrometry (MS). In the absence of receiving tank-vapor samples, we have focused our efforts toward validating the normal paraffin hydrocarbon (NPH) sampling and analysis methods and preparing the SUMMA{trademark} laboratory. All required milestones were met, including a report on the update of phase I sampling and analysis on August 15, 1993. This update described the work involved in preparing to analyze phase I samples (Appendix A). This report describes the analytical support provided by Pacific Northwest Laboratory (PNL){sup (a)} to the Hanford Tank Safety Vapor Program

    ASCA Observations of the Thermal Composite Supernova Remnant 3C 391

    Get PDF
    We present the results from ASCA observations of the centrally enhanced supernova remnant 3C 391 (G31.9+0.0). We use the ASCA SIS data to carry out an investigation of the spatial and spectral properties of the X-ray emission from this remnant. The collisional equilibrium ionization and non-equilibrium ionization spectral fits indicate that the hot gas within the remnant has basically reached ionization equilibrium. The variation of the hydrogen column density across the remnant is in agreement with the presence of a molecular cloud to the northwest. The comparisons of hydrogen column and X-ray hardness between the NW and SE portions of the remnant support a scenario in which the SNR has broken out of a dense region into an adjacent region of lower density. The mean density within the SNR is observed to be much lower than the immediate ambient cloud density. This and the centrally brightened X-ray morphology can be explained either by the evaporation of engulfed cloudlets or by a radiative stage of evolution for the remnant.Comment: 23 pages, 3 figures, accepted for the v563 ApJ 12/10/01 issu

    Spitzer observations of the N157B supernova remnant and its surroundings

    Full text link
    (Aims): We study the LMC interstellar medium in the field of the nebula N157B, which contains a supernova remnant, an OB association, ionized gas, and high-density dusty filaments in close proximity. We investigate the relative importance of shock excitation by the SNR and photo-ionization by the OB stars, as well as possible interactions between the supernova remnant and its environment. (Methods): We apply multiwavelength mapping and photometry, along with spatially resolved infrared spectroscopy, to identifying the nature of the ISM using new infrared data from the Spitzer space observatory and X-ray, optical, and radio data from the literature. (Results): The N157B SNR has no infrared counterpart. Infrared emission from the region is dominated by the compact blister-type HII region associated with 2MASS J05375027-6911071 and excited by an O8-O9 star. This object is part of an extended infrared emission region that is associated with a molecular cloud. We find only weak emission from the shock-indicator [FeII], and both the excitation and the heating of the extended cloud are dominated by photo-ionization by the early O stars of LH99. (Conclusions): Any possible impact by the expanding SNR does not now affect the extended cloud of molecules and dust, despite the apparent overlap of SNR X-ray emission with infrared and Ha emission from the cloud. This implies that the supernova progenitor cannot have been more massive than about 25 solar masses.Comment: 10 pages, 8 figures, published in A&

    Star Formation in Space and Time: Taurus-Auriga

    Get PDF
    To understand the formation of stellar groups, one must first document carefully the birth pattern within real clusters and associations. In this study of Taurus-Auriga, we combine pre-main-sequence ages from our own evolutionary tracks with stellar positions from observational surveys. Aided by the extensive, millimeter data on the molecular clouds, we develop a picture of the region's history. Star formation began, at a relatively low level and in a spatially diffuse manner, at least 10 Myr in the past. Within the last few million years, new stars have been produced at an accelerating rate, almost exclusively within a confined group of striated cloud filaments. The gas both inside and around the filaments appears to be in force balance. Thus, the appearance of the filaments is due to global, quasi-static contraction of the parent cloud material. Gravity drives this contraction and shock dissipation mediates it, but the internal motion of the gas does not appear to be turbulent. The accelerating nature of recent star formation means that the condensation of cloud cores is a threshold phenomenon, requiring a minimum background density. Other, nearby cloud regions, including Lupus and Chamaeleon, contain some locales that have attained this density, and others that have not. In the latter, we find extensive and sometimes massive molecular gas that is still devoid of young stars.Comment: 19 pages, 7 figures, to be published in ApJ - December 20, 200

    Invaded cluster algorithm for Potts models

    Full text link
    The invaded cluster algorithm, a new method for simulating phase transitions, is described in detail. Theoretical, albeit nonrigorous, justification of the method is presented and the algorithm is applied to Potts models in two and three dimensions. The algorithm is shown to be useful for both first-order and continuous transitions and evidently provides an efficient way to distinguish between these possibilities. The dynamic properties of the invaded cluster algorithm are studied. Numerical evidence suggests that the algorithm has no critical slowing for Ising models.Comment: 39 pages, revtex, 15 figures available on request from [email protected], to appear in Phys. Rev.
    corecore