524 research outputs found

    Billiard Systems in Three Dimensions: The Boundary Integral Equation and the Trace Formula

    Full text link
    We derive semiclassical contributions of periodic orbits from a boundary integral equation for three-dimensional billiard systems. We use an iterative method that keeps track of the composition of the stability matrix and the Maslov index as an orbit is traversed. Results are given for isolated periodic orbits and rotationally invariant families of periodic orbits in axially symmetric billiard systems. A practical method for determining the stability matrix and the Maslov index is described.Comment: LaTeX, 19 page

    Semiclassical Casimir Energies at Finite Temperature

    Get PDF
    We study the dependence on the temperature T of Casimir effects for a range of systems, and in particular for a pair of ideal parallel conducting plates, separated by a vacuum. We study the Helmholtz free energy, combining Matsubara's formalism, in which the temperature appears as a periodic Euclidean fourth dimension of circumference 1/T, with the semiclassical periodic orbital approximation of Gutzwiller. By inspecting the known results for the Casimir energy at T=0 for a rectangular parallelepiped, one is led to guess at the expression for the free energy of two ideal parallel conductors without performing any calculation. The result is a new form for the free energy in terms of the lengths of periodic classical paths on a two-dimensional cylinder section. This expression for the free energy is equivalent to others that have been obtained in the literature. Slightly extending the domain of applicability of Gutzwiller's semiclassical periodic orbit approach, we evaluate the free energy at T>0 in terms of periodic classical paths in a four-dimensional cavity that is the tensor product of the original cavity and a circle. The validity of this approach is at present restricted to particular systems. We also discuss the origin of the classical form of the free energy at high temperatures.Comment: 17 pages, no figures, Late

    The boundary integral method for magnetic billiards

    Full text link
    We introduce a boundary integral method for two-dimensional quantum billiards subjected to a constant magnetic field. It allows to calculate spectra and wave functions, in particular at strong fields and semiclassical values of the magnetic length. The method is presented for interior and exterior problems with general boundary conditions. We explain why the magnetic analogues of the field-free single and double layer equations exhibit an infinity of spurious solutions and how these can be eliminated at the expense of dealing with (hyper-)singular operators. The high efficiency of the method is demonstrated by numerical calculations in the extreme semiclassical regime.Comment: 28 pages, 12 figure

    Screening of classical Casimir forces by electrolytes in semi-infinite geometries

    Full text link
    We study the electrostatic Casimir effect and related phenomena in equilibrium statistical mechanics of classical (non-quantum) charged fluids. The prototype model consists of two identical dielectric slabs in empty space (the pure Casimir effect) or in the presence of an electrolyte between the slabs. In the latter case, it is generally believed that the long-ranged Casimir force due to thermal fluctuations in the slabs is screened by the electrolyte into some residual short-ranged force. The screening mechanism is based on a "separation hypothesis": thermal fluctuations of the electrostatic field in the slabs can be treated separately from the pure image effects of the "inert" slabs on the electrolyte particles. In this paper, by using a phenomenological approach under certain conditions, the separation hypothesis is shown to be valid. The phenomenology is tested on a microscopic model in which the conducting slabs and the electrolyte are modelled by the symmetric Coulomb gases of point-like charges with different particle fugacities. The model is solved in the high-temperature Debye-H\"uckel limit (in two and three dimensions) and at the free fermion point of the Thirring representation of the two-dimensional Coulomb gas. The Debye-H\"uckel theory of a Coulomb gas between dielectric walls is also solved.Comment: 25 pages, 2 figure

    Violation of action--reaction and self-forces induced by nonequilibrium fluctuations

    Get PDF
    We show that the extension of Casimir-like forces to fluctuating fluids driven out of equilibrium can exhibit two interrelated phenomena forbidden at equilibrium: self-forces can be induced on single asymmetric objects and the action--reaction principle between two objects can be violated. These effects originate in asymmetric restrictions imposed by the objects' boundaries on the fluid's fluctuations. They are not ruled out by the second law of thermodynamics since the fluid is in a nonequilibrium state. Considering a simple reaction--diffusion model for the fluid, we explicitly calculate the self-force induced on a deformed circle. We also show that the action--reaction principle does not apply for the internal Casimir forces exerting between a circle and a plate. Their sum, instead of vanishing, provides the self-force on the circle-plate assembly.Comment: 4 pages, 1 figure. V2: New title; Abstract partially rewritten; Largely enhanced introductory and concluding remarks (incl. new Refs.

    Maximal work extraction from quantum systems

    Get PDF
    Thermodynamics teaches that if a system initially off-equilibrium is coupled to work sources, the maximum work that it may yield is governed by its energy and entropy. For finite systems this bound is usually not reachable. The maximum extractable work compatible with quantum mechanics (``ergotropy'') is derived and expressed in terms of the density matrix and the Hamiltonian. It is related to the property of majorization: more major states can provide more work. Scenarios of work extraction that contrast the thermodynamic intuition are discussed, e.g. a state with larger entropy than another may produce more work, while correlations may increase or reduce the ergotropy.Comment: 5 pages, 0 figures, revtex

    Coagulation by Random Velocity Fields as a Kramers Problem

    Full text link
    We analyse the motion of a system of particles suspended in a fluid which has a random velocity field. There are coagulating and non-coagulating phases. We show that the phase transition is related to a Kramers problem, and use this to determine the phase diagram, as a function of the dimensionless inertia of the particles, epsilon, and a measure of the relative intensities of potential and solenoidal components of the velocity field, Gamma. We find that the phase line is described by a function which is non-analytic at epsilon=0, and which is related to escape over a barrier in the Kramers problem. We discuss the physical realisations of this phase transition.Comment: 4 pages, 3 figure

    Quantum measurement as driven phase transition: An exactly solvable model

    Get PDF
    A model of quantum measurement is proposed, which aims to describe statistical mechanical aspects of this phenomenon, starting from a purely Hamiltonian formulation. The macroscopic measurement apparatus is modeled as an ideal Bose gas, the order parameter of which, that is, the amplitude of the condensate, is the pointer variable. It is shown that properties of irreversibility and ergodicity breaking, which are inherent in the model apparatus, ensure the appearance of definite results of the measurement, and provide a dynamical realization of wave-function reduction or collapse. The measurement process takes place in two steps: First, the reduction of the state of the tested system occurs over a time of order â„Ź/(TN1/4)\hbar/(TN^{1/4}), where TT is the temperature of the apparatus, and NN is the number of its degrees of freedom. This decoherence process is governed by the apparatus-system interaction. During the second step classical correlations are established between the apparatus and the tested system over the much longer time-scale of equilibration of the apparatus. The influence of the parameters of the model on non-ideality of the measurement is discussed. Schr\"{o}dinger kittens, EPR setups and information transfer are analyzed.Comment: 35 pages revte

    The Casimir force at high temperature

    Get PDF
    The standard expression of the high-temperature Casimir force between perfect conductors is obtained by imposing macroscopic boundary conditions on the electromagnetic field at metallic interfaces. This force is twice larger than that computed in microscopic classical models allowing for charge fluctuations inside the conductors. We present a direct computation of the force between two quantum plasma slabs in the framework of non relativistic quantum electrodynamics including quantum and thermal fluctuations of both matter and field. In the semi-classical regime, the asymptotic force at large slab separation is identical to that found in the above purely classical models, which is therefore the right result. We conclude that when calculating the Casimir force at non-zero temperature, fluctuations inside the conductors can not be ignored.Comment: 7 pages, 0 figure

    Surface Polymer Network Model and Effective Membrane Curvature Elasticity

    Full text link
    A microscopic model of a surface polymer network - membrane system is introduced, with contact polymer surface interactions that can be either repulsive or attractive and sliplinks of functionality four randomly distributed over the supporting membrane surface anchoring the polymers to it. For the supporting surface perturbed from a planar configuration and a small relative number of surface sliplinks, we investigate an expansion of the free energy in terms of the local curvatures of the surface and the surface density of sliplinks, obtained through the application of the Balian - Bloch - Duplantier multiple surface scattering method. As a result, the dependence of the curvature elastic modulus, the Gaussian modulus as well as of the spontaneous curvature of the "dressed" membrane, ~{\sl i.e.} polymer network plus membrane matrix, is obtained on the mean polymer bulk end to end separation and the surface density of sliplinks.Comment: 15 pages with one included compressed uuencoded figure
    • …
    corecore