185 research outputs found

    Optical Properties of the Kara Sea

    Get PDF
    This study was motivated by the need to understand dispersion processes which affect the redistribution of nuclear wastes in the Arctic from dump sites in the Kara Sea and in the rivers which flow into the Kara Sea. We focus on vertical profiles of light beam transmission and fluorometry made over the delta region fronting the Ob and Yenisey Rivers and over the East Novaya Zemlya Trough (ENZT). The delta region fronting the Ob River Estuary contains a large repository of particles in a dense bottom nepheloid layer with a maximum centered similar to 100 km in front of the estuary entrance and covering an area of roughly 200 km diameter. This suspended particle mass repository appears to contain both sediments and detritus and lends credence to the Lisitsyn [1995] concept of the marginal filter zone. In the deep water of the ENZT we found a strong increase of beam attenuation with depth, indicating a relatively large increase of particle mass concentration from similar to 50 m to the bottom (depths in excess of 300 m). The strongest concentration was adjacent to the southeast coast of Novaya Zemlya. We suggest that a type of hyperpycnical flow occurs from accumulation of sediments in the bottom waters of Novaya Zemlya fjords which then cascades down the steep slopes adjacent to the island, producing the particle mass distribution as observed by the transmissometer. The accumulation of these repositories of high particle mass concentrations in suspension would suggest that the residence time is high but that storm-driven events could act to disperse the material

    Scales of Seafloor Sediment Resuspension in the Northern Gulf of Mexico

    Get PDF
    Seafloor sediment resuspension events of different scales and magnitudes and the resulting deep (\u3e1,000 m) benthic nepheloid layers were investigated in the northern Gulf of Mexico during Fall 2012 to Summer 2013. Time-series data of size-specific in-situ settling speeds of marine snow in the benthic nepheloid layer (moored flux cameras), particle size distributions (profiling camera), currents (various current meters) and stacked time-series flux data (sediment traps) were combined to recognize resuspension events ranging from small-scale local, to small-scale far-field to hurricane-scale. One smallscale local resuspension event caused by inertial currents was identified based on local high current speeds (\u3e10 cm s–1) and trap data. Low POC content combined with high lithogenic silica flux at 30 m above bottom (mab) compared to the flux at 120 mab, suggested local resuspension reaching 30 mab, but not 120 mab. Another similar event was detected by the changes in particle size distribution and settling speeds of particles in the benthic nepheloid layer. Flux data indicated two other small-scale events, which occurred at some distance, rather than locally. Inertia-driven resuspension of material in shallower areas surrounding the traps presumably transported this material downslope leaving a resuspension signal at 120 mab, but not at 30 mab. The passage of hurricane Isaac left a larger scale resuspension event that lasted a few days and was recorded in both traps. Although hurricanes cause large-scale events readily observable in sediment trap samples, resuspension events small in temporal and spatial scale are not easily recognizable in trapped material as they tend to provide less material and become part of the background signal in the long-term averaged trap samples. We suggest that these small-scale resuspension events, mostly unnoticed in conventional time-series sampling, play an important role in the redistribution and ultimate fate of sediment distribution on the seafloor

    Host Range and Genetic Diversity of Arenaviruses in Rodents, United Kingdom

    Get PDF
    During a study to extend our knowledge of the host range and genetic diversity of arenaviruses in Great Britain, 66 of 1,147 rodent blood samples tested for antibody, and 127 of 482 tested by PCR, were found positive. All sequences most closely resembled those of previously identified lymphocytic choriomeningitis virus

    A new US polar research vessel for the twenty-first century

    Get PDF
    Author Posting. © The Oceanography Society, 2012. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 25, no. 3 (2012): 204-207, doi:10.5670/oceanog.2012.96.Scientific and political interests at the poles are significant and rapidly increasing, driven in part by the effects of climate change and emerging geopolitical realities. The polar regions provide important services to global ecosystems and humankind, ranging from food and energy to freshwater and biodiversity. Yet the poles are experiencing changes at rates that far outpace the rest of the planet. Coastal Arctic communities are impacted by climate change through coastal erosion, sea level rise, ice loss, and altered marine food webs, threatening the future of their subsistence lifestyle. Climate change has dramatically increased the melt rate of ice sheets and glaciers at both poles and has the potential to significantly raise sea level worldwide. Oil and gas drilling as well as transportation in the Arctic have reached all-time high levels, in part because of reduced sea ice cover. Tourism is a growing industry at both poles, bringing more than 20,000 tourists each year to the western Antarctic Peninsula alone. The collateral effects of human activities include the potential for pollution of the marine environment, particularly through spills of hydrocarbons. Our ability to understand the effects of such activities and mishaps is limited, particularly in ice-covered areas during winter

    Isotopic composition of sinking particles: Oil effects, recovery and baselines in the Gulf of Mexico, 2010–2015

    Get PDF
    The extensive release of oil during the 2010 Deepwater Horizon spill in the northern Gulf of Mexico perturbed the pelagic ecosystem and associated sinking material. To gauge the recovery and post-spill baseline sources, we measured Δ14C, δ13C and δ34S of sinking particles near the spill site and at a reference site and natural seep site. Particulates were collected August 2010–April 2016 in sediment traps moored at sites with depths of 1160–1660 m. Near the spill site, changes in Δ14C indicated a 3-year recovery period, while δ34S indicated 1–2 years, which agreed with estimates of 1–2 years based on hydrocarbon composition. Under post-spill baseline conditions, carbon inputs to sinking particulates in the northern Gulf were dominated by surface marine production (80–85%) and riverine inputs (15–20%). Near the spill site, Δ14C values were depleted in October 2010 (–140 to –80‰), increasing systematically by 0.07 ± 0.02‰ day–1 until July 2013 when values reached –3.2 ± 31.0‰. This Δ14C baseline was similar to particulates at the reference site (3.8 ± 31.1‰). At both sites, δ13C values stayed constant throughout the study period (–21.9 ± 0.5‰ and –21.9 ± 0.9‰, respectively). δ34S near the spill site was depleted (7.4 ± 3.1‰) during October 2010–September 2011, but enriched (16.9 ± 2.0‰) and similar to the reference site (16.2 ± 3.1‰) during November 2012–April 2015. At the seep site, Δ14C values were –21.7 ± 45.7‰ except during August 2012–January 2013 when a significant Δ14C depletion of –109.0 ± 29.1‰ was observed. We interpret this depletion period, also observed in δ13C data, as caused by the incorporation of naturally seeped oil into sinking particles. Determination of post-spill baselines for these isotopic signatures allows for evaluation of anthropogenic inputs in future

    Microhabitat use and spatial distribution in Picado’s Bromeliad Treefrog, Isthmohyla picadoi (Anura, Hylidae)

    Get PDF
    Isthmohyla picadoi is a Neotropical hylid frog found in upper humid montane forests of Costa Rica and Panama. The species is of particular interest because it continues to persist in an area in which the amphibian community has otherwise been decimated by the pathogenic fungus, Batrachochytrium dendrobatidis. Ground search, ladder climbing, and tree climbing techniques were used to locate 32 individuals; including adult males and females, juveniles, andmetamorphosing frogs. The majority of frogs were found in bromeliads, although some individuals were found on plants of the Euphorbiaceae, Musaceae, and Heliconiaceae families. Most frogs were found in larger bromeliads (45 cm or wider). There was a positive correlation between SUL and bromeliad width within the population but not within maturity classes (adult males, adult females, all adults, nonmetamorphosingjuveniles), suggesting that juvenile and adult frogs differ in bromeliad usage. Ranges of SUL and body weight in this particular population are much greater than those reported in previous species accounts

    The rise and fall of methanotrophy following a deepwater oil-well blowout

    Get PDF
    The blowout of the Macondo oil well in the Gulf of Mexico in April 2010 injected up to 500,000 tonnes of natural gas, mainly methane, into the deep sea1. Most of the methane released was thought to have been consumed by marine microbes between July and August 20102, 3. Here, we report spatially extensive measurements of methane concentrations and oxidation rates in the nine months following the spill. We show that although gas-rich deepwater plumes were a short-lived feature, water column concentrations of methane remained above background levels throughout the rest of the year. Rates of microbial methane oxidation peaked in the deepwater plumes in May and early June, coincident with a rapid rise in the abundance of known and new methane-oxidizing microbes. At this time, rates of methane oxidation reached up to 5,900 nmol l−1 d−1—the highest rates documented in the global pelagic ocean before the blowout4. Rates of methane oxidation fell to less than 50 nmol l−1 d−1 in late June, and continued to decline throughout the remainder of the year. We suggest the precipitous drop in methane consumption in late June, despite the persistence of methane in the water column, underscores the important role that physiological and environmental factors play in constraining the activity of methane-oxidizing bacteria in the Gulf of Mexico

    Characterization of Subsurface Polycyclic Aromatic Hydrocarbons at the Deepwater Horizon Site

    Get PDF
    Here, we report the initial observations of distributions of polycyclic aromatic hydrocarbons (PAH) in subsurface waters near the Deepwater Horizon oil well site (also referred to as the Macondo, Mississippi Canyon Block 252 or MC252 well). Profiles of in situ fluorescence and beam attenuation conducted during 9-16 May 2010 were characterized by distinct peaks at depths greater than 1000 m, with highest intensities close to the wellhead and decreasing intensities with increasing distance from the wellhead. Gas chromatography/mass spectrometry (GC/MS) analyses of water samples coinciding with the deep fluorescence and beam attenuation anomalies confirmed the presence of polycyclic aromatic hydrocarbons (PAH) at concentrations reaching 189 μg L−1 (ppb). Subsurface exposure to PAH at levels considered to be toxic to marine organisms would have occurred in discrete depth layers between 1000 and 1400 m in the region southwest of the wellhead site and extending at least as far as 13 km

    Analyses of Water Samples From the Deepwater Horizon Oil Spill: Documentation of the Subsurface Plume

    Get PDF
    Surface and subsurface water samples were collected in the vicinity of the Deepwater Horizon (DWH) wellhead in the Gulf of Mexico. Samples were extracted with dichloromethane and analyzed for a toxic component, polycyclic aromatic hydrocarbons (PAHs), using total scanning fluorescence (TSF) and by gas chromatography/mass spectrometry (GC/MS). An aliquot of fresh, floating oil from a surface sample was used as a DWH oil reference standard. Twelve of 19 samples collected from 24 May 2010 to 6 June 2010 on the R/V Walton Smith cruise contained TSF maximum intensities above background (0.7 µg L À1 based on 1 L sample size). These 12 samples had total petroleum hydrocarbon (TPH) concentrations as measured by quantitative gas chromatography flame ionization detector (FID) ranging from 2 to 442 µg L À1 . Quantitative GC/MS analysis of these 12 samples resulted in total PAH concentrations ranging from 0.01 to 59 µg L À1 . Low molecular weight, more water-soluble naphthalene and alkylated naphthalene dominated the PAH composition patterns for 11 of the 12 water samples. Sample 12 exhibited substantially reduced concentrations of naphthalenes relative to other PAH compounds. The total PAH concentrations were positively correlated (R 2 = 0.80) with the TSF maximum intensity (MI). TSF is a simple, rapid technique providing an accurate prediction of the amount of PAH present in a sample. TSFderived estimates of the relative contribution of PAH present in the oil provided evidence that PAH represented~10% of the higher molecular weight TPH. The subsurface oil plume was confirmed by the analyses of discrete water samples for TSF, TPH, and PAH
    • …
    corecore