45 research outputs found

    Optimal eavesdropping on QKD without quantum memory

    Full text link
    We consider the security of the BB84, six-state and SARG04 quantum key distribution protocols when the eavesdropper doesn't have access to a quantum memory. In this case, Eve's most general strategy is to measure her ancilla with an appropriate POVM designed to take advantage of the post-measurement information that will be released during the sifting phase of the protocol. After an optimization on all the parameters accessible to Eve, our method provides us with new bounds for the security of six-state and SARG04 against a memoryless adversary. In particular, for the six-state protocol we show that the maximum QBER for which a secure key can be extracted is increased from 12.6% (for collective attacks) to 20.4% with the memoryless assumption.Comment: 7 pages, 3 figures. Analysis of six-state and SARG04 QKD protocols adde

    Direct Measurement of the Photon Statistics of a Triggered Single Photon Source

    Get PDF
    We studied intensity fluctuations of a single photon source relying on the pulsed excitation of the fluorescence of a single molecule at room temperature. We directly measured the Mandel parameter Q(T) over 4 orders of magnitude of observation timescale T, by recording every photocount. On timescale of a few excitation periods, subpoissonian statistics is clearly observed and the probablility of two-photons events is 10 times smaller than Poissonian pulses. On longer times, blinking in the fluorescence, due to the molecular triplet state, produces an excess of noise.Comment: 4 pages, 3 figures, 1 table submitted to Physical Review Letter

    Experimental open air quantum key distribution with a single photon source

    Full text link
    We present a full implementation of a quantum key distribution (QKD) system with a single photon source, operating at night in open air. The single photon source at the heart of the functional and reliable setup relies on the pulsed excitation of a single nitrogen-vacancy color center in diamond nanocrystal. We tested the effect of attenuation on the polarized encoded photons for inferring longer distance performance of our system. For strong attenuation, the use of pure single photon states gives measurable advantage over systems relying on weak attenuated laser pulses. The results are in good agreement with theoretical models developed to assess QKD security

    Low Cost and Compact Quantum Cryptography

    Full text link
    We present the design of a novel free-space quantum cryptography system, complete with purpose-built software, that can operate in daylight conditions. The transmitter and receiver modules are built using inexpensive off-the-shelf components. Both modules are compact allowing the generation of renewed shared secrets on demand over a short range of a few metres. An analysis of the software is shown as well as results of error rates and therefore shared secret yields at varying background light levels. As the system is designed to eventually work in short-range consumer applications, we also present a use scenario where the consumer can regularly 'top up' a store of secrets for use in a variety of one-time-pad and authentication protocols.Comment: 18 pages, 9 figures, to be published in New Journal of Physic

    Room temperature triggered single-photon source in the near infrared

    Full text link
    We report the realization of a solid-state triggered single-photon source with narrow emission in the near infrared at room temperature. It is based on the photoluminescence of a single nickel-nitrogen NE8 colour centre in a chemical vapour deposited diamond nanocrystal. Stable single-photon emission has been observed in the photoluminescence under both continuous-wave and pulsed excitations. The realization of this source represents a step forward in the application of diamond-based single-photon sources to Quantum Key Distribution (QKD) under practical operating conditions.Comment: 10 page

    Using quantum key distribution for cryptographic purposes: a survey

    Full text link
    The appealing feature of quantum key distribution (QKD), from a cryptographic viewpoint, is the ability to prove the information-theoretic security (ITS) of the established keys. As a key establishment primitive, QKD however does not provide a standalone security service in its own: the secret keys established by QKD are in general then used by a subsequent cryptographic applications for which the requirements, the context of use and the security properties can vary. It is therefore important, in the perspective of integrating QKD in security infrastructures, to analyze how QKD can be combined with other cryptographic primitives. The purpose of this survey article, which is mostly centered on European research results, is to contribute to such an analysis. We first review and compare the properties of the existing key establishment techniques, QKD being one of them. We then study more specifically two generic scenarios related to the practical use of QKD in cryptographic infrastructures: 1) using QKD as a key renewal technique for a symmetric cipher over a point-to-point link; 2) using QKD in a network containing many users with the objective of offering any-to-any key establishment service. We discuss the constraints as well as the potential interest of using QKD in these contexts. We finally give an overview of challenges relative to the development of QKD technology that also constitute potential avenues for cryptographic research.Comment: Revised version of the SECOQC White Paper. Published in the special issue on QKD of TCS, Theoretical Computer Science (2014), pp. 62-8

    Topological optimization of quantum key distribution networks

    Full text link
    A Quantum Key Distribution (QKD) network is an infrastructure that allows the realization of the key distribution cryptographic primitive over long distances and at high rates with information-theoretic security. In this work, we consider QKD networks based on trusted repeaters from a topology viewpoint, and present a set of analytical models that can be used to optimize the spatial distribution of QKD devices and nodes in specific network configurations in order to guarantee a certain level of service to network users, at a minimum cost. We give details on new methods and original results regarding such cost minimization arguments applied to QKD networks. These results are likely to become of high importance when the deployment of QKD networks will be addressed by future quantum telecommunication operators. They will therefore have a strong impact on the design and requirements of the next generation of QKD devices.Comment: 25 pages, 4 figure

    Excited-state spectroscopy of single NV defects in diamond using optically detected magnetic resonance

    Get PDF
    Using pulsed optically detected magnetic resonance techniques, we directly probe electron-spin resonance transitions in the excited-state of single Nitrogen-Vacancy color centers in diamond. Unambiguous assignment of excited state fine structure is made, based on changes of NV defect photoluminescence lifetime. This study provides significant insight into the structure of the emitting 3E excited state, which is invaluable for the development of diamond-based quantum information processing.Comment: 10 pages, 4 figure

    Controlling passively-quenched single photon detectors by bright light

    Full text link
    Single photon detectors based on passively-quenched avalanche photodiodes can be temporarily blinded by relatively bright light, of intensity less than a nanowatt. I describe a bright-light regime suitable for attacking a quantum key distribution system containing such detectors. In this regime, all single photon detectors in the receiver Bob are uniformly blinded by continuous illumination coming from the eavesdropper Eve. When Eve needs a certain detector in Bob to produce a click, she modifies polarization (or other parameter used to encode quantum states) of the light she sends to Bob such that the target detector stops receiving light while the other detector(s) continue to be illuminated. The target detector regains single photon sensitivity and, when Eve modifies the polarization again, produces a single click. Thus, Eve has full control of Bob and can do a successful intercept-resend attack. To check the feasibility of the attack, 3 different models of passively-quenched detectors have been tested. In the experiment, I have simulated the intensity diagrams the detectors would receive in a real quantum key distribution system under attack. Control parameters and side effects are considered. It appears that the attack could be practically possible.Comment: Experimental results from a third detector model added. Minor corrections and edits made. 11 pages, 10 figure

    Path Selection for Quantum Repeater Networks

    Full text link
    Quantum networks will support long-distance quantum key distribution (QKD) and distributed quantum computation, and are an active area of both experimental and theoretical research. Here, we present an analysis of topologically complex networks of quantum repeaters composed of heterogeneous links. Quantum networks have fundamental behavioral differences from classical networks; the delicacy of quantum states makes a practical path selection algorithm imperative, but classical notions of resource utilization are not directly applicable, rendering known path selection mechanisms inadequate. To adapt Dijkstra's algorithm for quantum repeater networks that generate entangled Bell pairs, we quantify the key differences and define a link cost metric, seconds per Bell pair of a particular fidelity, where a single Bell pair is the resource consumed to perform one quantum teleportation. Simulations that include both the physical interactions and the extensive classical messaging confirm that Dijkstra's algorithm works well in a quantum context. Simulating about three hundred heterogeneous paths, comparing our path cost and the total work along the path gives a coefficient of determination of 0.88 or better.Comment: 12 pages, 8 figure
    corecore