1,512 research outputs found

    STUDIES OF THE MECHANISM OF ACTION OF COBAMIDE COENZYMES

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73404/1/j.1749-6632.1964.tb45046.x.pd

    Characterization of bacteriophage communities and CRISPR profiles from dental plaque.

    Get PDF
    BackgroundDental plaque is home to a diverse and complex community of bacteria, but has generally been believed to be inhabited by relatively few viruses. We sampled the saliva and dental plaque from 4 healthy human subjects to determine whether plaque was populated by viral communities, and whether there were differences in viral communities specific to subject or sample type.ResultsWe found that the plaque was inhabited by a community of bacteriophage whose membership was mostly subject-specific. There was a significant proportion of viral homologues shared between plaque and salivary viromes within each subject, suggesting that some oral viruses were present in both sites. We also characterized Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) in oral streptococci, as their profiles provide clues to the viruses that oral bacteria may be able to counteract. While there were some CRISPR spacers specific to each sample type, many more were shared across sites and were highly subject specific. Many CRISPR spacers matched viruses present in plaque, suggesting that the evolution of CRISPR loci may have been specific to plaque-derived viruses.ConclusionsOur findings of subject specificity to both plaque-derived viruses and CRISPR profiles suggest that human viral ecology may be highly personalized

    Transcriptome analysis of bacteriophage communities in periodontal health and disease.

    Get PDF
    BackgroundThe role of viruses as members of the human microbiome has gained broader attention with the discovery that human body surfaces are inhabited by sizeable viral communities. The majority of the viruses identified in these communities have been bacteriophages that predate upon cellular microbiota rather than the human host. Phages have the capacity to lyse their hosts or provide them with selective advantages through lysogenic conversion, which could help determine the structure of co-existing bacterial communities. Because conditions such as periodontitis are associated with altered bacterial biota, phage mediated perturbations of bacterial communities have been hypothesized to play a role in promoting periodontal disease. Oral phage communities also differ significantly between periodontal health and disease, but the gene expression of oral phage communities has not been previously examined.ResultsHere, we provide the first report of gene expression profiles from the oral bacteriophage community using RNA sequencing, and find that oral phages are more highly expressed in subjects with relative periodontal health. While lysins were highly expressed, the high proportion of integrases expressed suggests that prophages may account for a considerable proportion of oral phage gene expression. Many of the transcriptome reads matched phages found in the oral cavities of the subjects studied, indicating that phages may account for a substantial proportion of oral gene expression. Reads homologous to siphoviruses that infect Firmicutes were amongst the most prevalent transcriptome reads identified in both periodontal health and disease. Some genes from the phage lytic module were significantly more highly expressed in subjects with periodontal disease, suggesting that periodontitis may favor the expression of some lytic phages.ConclusionsAs we explore the contributions of viruses to the human microbiome, the data presented here suggest varying expression of bacteriophage communities in oral health and disease

    Delayed optical nonlinearity of thin metal films

    Get PDF
    Metals typically have very large nonlinear susceptibilities, whose origin is mainly of thermal character. We model the cubic nonlinearity of thin metal films by means of a delayed response derived \textit{ab initio} from an improved version of the classic two temperature model. We validate our model by comparison with ultrafast pump-probe experiments on gold films

    Transmission of viruses via our microbiomes.

    Get PDF
    BackgroundBacteria inhabiting the human body have important roles in a number of physiological processes and are known to be shared amongst genetically-related individuals. Far less is known about viruses inhabiting the human body, but their ecology suggests they may be shared between close contacts.ResultsHere, we report the ecology of viruses in the guts and mouths of a cohort and demonstrate that substantial numbers of gut and oral viruses were shared amongst genetically unrelated, cohabitating individuals. Most of these viruses were bacteriophages, and each individual had distinct oral and gut viral ecology from their housemates despite the fact that some of their bacteriophages were shared. The distribution of bacteriophages over time within households indicated that they were frequently transmitted between the microbiomes of household contacts.ConclusionsBecause bacteriophages may shape human oral and gut bacterial ecology, their transmission to household contacts suggests they could have substantial roles in shaping the microbiota within a household

    Microbial diversity in individuals and their household contacts following typical antibiotic courses.

    Get PDF
    BackgroundAntibiotics are a mainstay of treatment for bacterial infections worldwide, yet the effects of typical antibiotic prescriptions on human indigenous microbiota have not been thoroughly evaluated. We examined the effects of the two most commonly prescribed antibiotics (amoxicillin and azithromycin) in the USA to discern whether short-term antibiotic courses may have prolonged effects on human microbiota.ResultsWe sampled the feces, saliva, and skin specimens from a cohort of unrelated, cohabitating individuals over 6 months. An individual in each household was given an antibiotic, and the other a placebo to discern antibiotic impacts on microbiota, as well as determine whether antibiotic use might reshape the microbiota of each household. We observed household-specific patterns of microbiota on each body surface, which persevered despite antibiotic perturbations. While the gut microbiota within an individual became more dissimilar over time, there was no evidence that the use of antibiotics accelerated this process when compared to household members. There was a significant change in microbiota diversity in the gut and mouth in response to antibiotics, but analogous patterns were not observed on the skin. Those who received 7 days of amoxicillin generally had greater reductions in diversity compared to those who received 3 days, in contrast to those who received azithromycin.ConclusionsAs few as 3 days of treatment with the most commonly prescribed antibiotics can result in sustained reductions in microbiota diversity, which could have implications for the maintenance of human health and resilience to disease

    Nonlocal mechanism for cluster synchronization in neural circuits

    Full text link
    The interplay between the topology of cortical circuits and synchronized activity modes in distinct cortical areas is a key enigma in neuroscience. We present a new nonlocal mechanism governing the periodic activity mode: the greatest common divisor (GCD) of network loops. For a stimulus to one node, the network splits into GCD-clusters in which cluster neurons are in zero-lag synchronization. For complex external stimuli, the number of clusters can be any common divisor. The synchronized mode and the transients to synchronization pinpoint the type of external stimuli. The findings, supported by an information mixing argument and simulations of Hodgkin Huxley population dynamic networks with unidirectional connectivity and synaptic noise, call for reexamining sources of correlated activity in cortex and shorter information processing time scales.Comment: 8 pges, 6 figure

    Effects of Long Term Antibiotic Therapy on Human Oral and Fecal Viromes.

    Get PDF
    Viruses are integral members of the human microbiome. Many of the viruses comprising the human virome have been identified as bacteriophage, and little is known about how they respond to perturbations within the human ecosystem. The intimate association of phage with their cellular hosts suggests their communities may change in response to shifts in bacterial community membership. Alterations to human bacterial biota can result in human disease including a reduction in the host's resilience to pathogens. Here we report the ecology of oral and fecal viral communities and their responses to long-term antibiotic therapy in a cohort of human subjects. We found significant differences between the viral communities of each body site with a more heterogeneous fecal virus community compared with viruses in saliva. We measured the relative diversity of viruses, and found that the oral viromes were significantly more diverse than fecal viromes. There were characteristic changes in the membership of oral and fecal bacterial communities in response to antibiotics, but changes in fecal viral communities were less distinguishing. In the oral cavity, an abundance of papillomaviruses found in subjects on antibiotics suggests an association between antibiotics and papillomavirus production. Despite the abundance of papillomaviruses identified, in neither the oral nor the fecal viromes did antibiotic therapy have any significant impact upon overall viral diversity. There was, however, an apparent expansion of the reservoir of genes putatively involved in resistance to numerous classes of antibiotics in fecal viromes that was not paralleled in oral viromes. The emergence of antibiotic resistance in fecal viromes in response to long-term antibiotic therapy in humans suggests that viruses play an important role in the resilience of human microbial communities to antibiotic disturbances

    Exact solution of a linear molecular motor model driven by two-step fluctuations and subject to protein friction

    Full text link
    We investigate by analytical means the stochastic equations of motion of a linear molecular motor model based on the concept of protein friction. Solving the coupled Langevin equations originally proposed by Mogilner et al. (A. Mogilner et al., Phys. Lett. {\bf 237}, 297 (1998)), and averaging over both the two-step internal conformational fluctuations and the thermal noise, we present explicit, analytical expressions for the average motion and the velocity-force relationship. Our results allow for a direct interpretation of details of this motor model which are not readily accessible from numerical solutions. In particular, we find that the model is able to predict physiologically reasonable values for the load-free motor velocity and the motor mobility.Comment: 12 pages revtex, 6 eps-figure
    • …
    corecore