294 research outputs found

    Critical behavior of a non-equilibrium interacting particle system driven by an oscillatory field

    Full text link
    First- and second-order temperature driven transitions are studied, in a lattice gas driven by an oscillatory field. The short time dynamics study provides upper and lower bounds for the first-order transition points obtained using standard simulations. The difference between upper and lower bounds is a measure for the strength of the first-order transition and becomes negligible small for densities close to one half. In addition, we give strong evidence on the existence of multicritical points and a critical temperature gap, the latter induced by the anisotropy introduced by the driving field.Comment: 12 pages, 4 figures; to appear in Europhys. Let

    Application of a renormalization group algorithm to nonequilibrium cellular automata with one absorbing state

    Full text link
    We improve a recently proposed dynamically driven renormalization group algorithm for cellular automata systems with one absorbing state, introducing spatial correlations in the expression for the transition probabilities. We implement the renormalization group scheme considering three different approximations which take into account correlations in the stationary probability distribution. The improved scheme is applied to a probabilistic cellular automaton already introduced in the literature.Comment: 7 pages, 4 figures, to be published in Phys. Rev.

    Maximal height statistics for 1/f^alpha signals

    Full text link
    Numerical and analytical results are presented for the maximal relative height distribution of stationary periodic Gaussian signals (one dimensional interfaces) displaying a 1/f^alpha power spectrum. For 0<alpha<1 (regime of decaying correlations), we observe that the mathematically established limiting distribution (Fisher-Tippett-Gumbel distribution) is approached extremely slowly as the sample size increases. The convergence is rapid for alpha>1 (regime of strong correlations) and a highly accurate picture gallery of distribution functions can be constructed numerically. Analytical results can be obtained in the limit alpha -> infinity and, for large alpha, by perturbation expansion. Furthermore, using path integral techniques we derive a trace formula for the distribution function, valid for alpha=2n even integer. From the latter we extract the small argument asymptote of the distribution function whose analytic continuation to arbitrary alpha > 1 is found to be in agreement with simulations. Comparison of the extreme and roughness statistics of the interfaces reveals similarities in both the small and large argument asymptotes of the distribution functions.Comment: 17 pages, 8 figures, RevTex

    Numerical study of a first-order irreversible phase transition in a CO+NO catalyzed reaction model

    Full text link
    The first-order irreversible phase transitions (IPT) of the Yaldran-Khan model (Yaldran-Khan, J. Catal. 131, 369, 1991) for the CO+NO reaction is studied using the constant coverage (CC) ensemble and performing epidemic simulations. The CC method allows the study of hysteretic effects close to coexistence as well as the location of both the upper spinodal point and the coexistence point. Epidemic studies show that at coexistence the number of active sites decreases according to a (short-time) power law followed by a (long-time) exponential decay. It is concluded that first-order IPT's share many characteristic of their reversible counterparts, such as the development of short ranged correlations, hysteretic effects, metastabilities, etc.Comment: 17 pages, 10 figure

    Phase Transitions and Oscillations in a Lattice Prey-Predator Model

    Full text link
    A coarse grained description of a two-dimensional prey-predator system is given in terms of a 3-state lattice model containing two control parameters: the spreading rates of preys and predators. The properties of the model are investigated by dynamical mean-field approximations and extensive numerical simulations. It is shown that the stationary state phase diagram is divided into two phases: a pure prey phase and a coexistence phase of preys and predators in which temporal and spatial oscillations can be present. The different type of phase transitions occuring at the boundary of the prey absorbing phase, as well as the crossover phenomena occuring between the oscillatory and non-oscillatory domains of the coexistence phase are studied. The importance of finite size effects are discussed and scaling relations between different quantities are established. Finally, physical arguments, based on the spatial structure of the model, are given to explain the underlying mechanism leading to oscillations.Comment: 11 pages, 13 figure

    An algorithm to calculate the transport exponent in strip geometries

    Full text link
    An algorithm for solving the random resistor problem by means of the transfer-matrix approach is presented. Preconditioning by spanning clusters extraction both reduces the size of the conductivity matrix and speed up the calculations.Comment: 17 pages, RevTeX2.1, HLRZ - 97/9

    Nonextensivity of the cyclic Lattice Lotka Volterra model

    Full text link
    We numerically show that the Lattice Lotka-Volterra model, when realized on a square lattice support, gives rise to a {\it finite} production, per unit time, of the nonextensive entropy Sq=1ipiqq1S_q= \frac{1- \sum_ip_i^q}{q-1} (S1=ipilnpi)(S_1=-\sum_i p_i \ln p_i). This finiteness only occurs for q=0.5q=0.5 for the d=2d=2 growth mode (growing droplet), and for q=0q=0 for the d=1d=1 one (growing stripe). This strong evidence of nonextensivity is consistent with the spontaneous emergence of local domains of identical particles with fractal boundaries and competing interactions. Such direct evidence is for the first time exhibited for a many-body system which, at the mean field level, is conservative.Comment: Latex, 6 pages, 5 figure

    Dynamic behavior of anisotropic non-equilibrium driving lattice gases

    Full text link
    It is shown that intrinsically anisotropic non-equilibrium systems relaxing by a dynamic process exhibit universal critical behavior during their evolution toward non-equilibrium stationary states. An anisotropic scaling anzats for the dynamics is proposed and tested numerically. Relevant critical exponents can be evaluated self-consistently using both the short- and long-time dynamics frameworks. The obtained results allow us to clarify a long-standing controversy about the theoretical description, the universality and the origin of the anisotropy of driven diffusive systems, showing that the standard field theory does not hold and supporting a recently proposed alternative theory.Comment: 4 pages, 2 figure

    Low energy radioactive ion beams at SPES for nuclear physics and medical applications

    Get PDF
    Over the past decades many accelerator facilities have been built in order to produce radioactive nuclei. Among the falcility under construction, SPES (Selective Production of Exotic Species) is the Italian ISOL (Isotope Separation On Line) facility in the installation phase in these years in the Laboratori Nazionali di Legnaro. The innovative aspect of this facility is that the radioactive beam produced by fission induced by the proton beam, produced by a high power cyclotron, interact with a multi-disks uranium carbide target. The formed RIB will be sent directly to the low energy experimental area and, afterwards, to the post-acceleration complex. Currently the installation program concerning the SPES RIB source provides the set-up of the apparatus around the production bunker. The main objective of SPES project is to provide, in the next years, the first low-energy radioactive beams for beta decay experiments using the b-DS (beta Decay Station) set-up and for radiopharmaceutical applications by means of the IRIS (ISOLPHARM Radioactive Implantation Station) apparatus. In this work, all the specific issues related to the SPES RIB and the Low Energy beam lines will be reported. The main RIB systems, such as ion source systems, target-handling devices and the installation of low energy transport line, will be presented in detail
    corecore