3,408 research outputs found
The optical gain lever: A novel gain mechanism in the direct modulation of quantum well semiconductor lasers
A new gain mechanism active in certain quantum well laser diode structures is demonstrated and explained theoretically. It enhances the modulation amplitude produced by either optical or electrical modulation of quantum well structures. In the devices tested, power gains of 6 dB were measured from low frequency to frequencies of several gigahertz. Higher gains may be possible in optimized structures
Marginal likelihoods in phylogenetics: a review of methods and applications
By providing a framework of accounting for the shared ancestry inherent to
all life, phylogenetics is becoming the statistical foundation of biology. The
importance of model choice continues to grow as phylogenetic models continue to
increase in complexity to better capture micro and macroevolutionary processes.
In a Bayesian framework, the marginal likelihood is how data update our prior
beliefs about models, which gives us an intuitive measure of comparing model
fit that is grounded in probability theory. Given the rapid increase in the
number and complexity of phylogenetic models, methods for approximating
marginal likelihoods are increasingly important. Here we try to provide an
intuitive description of marginal likelihoods and why they are important in
Bayesian model testing. We also categorize and review methods for estimating
marginal likelihoods of phylogenetic models, highlighting several recent
methods that provide well-behaved estimates. Furthermore, we review some
empirical studies that demonstrate how marginal likelihoods can be used to
learn about models of evolution from biological data. We discuss promising
alternatives that can complement marginal likelihoods for Bayesian model
choice, including posterior-predictive methods. Using simulations, we find one
alternative method based on approximate-Bayesian computation (ABC) to be
biased. We conclude by discussing the challenges of Bayesian model choice and
future directions that promise to improve the approximation of marginal
likelihoods and Bayesian phylogenetics as a whole.Comment: 33 pages, 3 figure
Laboratory measurement of the pure rotational spectrum of vibrationally excited HCO^+ (v_2 = 1) by far-infrared laser sideband spectroscopy
Laboratory observations of the pure rotational spectrum of HCO^+ in its lowest excited bending state
(v_1, v^l_2 v_3)_= (0,1^1,0) are reported. Because of their severe excitation requirements, such vibrational satellites
and the high-J ground-state lines also measured here sample only hot, dense regions of matter in active molecular
cloud cores and circumstellar envelopes. As the HCO^+ abundance is tied directly to the gas fractional ionization, it is probable that the vibrationally excited formyl ion transitions will provide high-contrast
observations of shocked molecular material, rather than the more quiescent, radiatively heated gas surrounding
stellar sources detected with the few vibrationally excited neutral species observed to date
30-nm wavelength conversion at 10 Gbit/s by four-wave mixing in a semiconductor optical amplifier
Four-wave mixing (FWM) in semiconductor optical amplifiers (SOAs) is currently the only available strictly transparent wavelength-conversion technique, which is not penalized by phase matching. The span of the conversion is limited primarily by conversion efficiency and signal-to-noise (SNR) issues, both of which are expected to improve with the use of longer SOAs. In this paper, we demonstrate significantly enhanced performance of long converters in a system experiment at 10 Gbit/s. The experiment shows for the first time, to our knowledge, that FWM wavelength down-conversions can span the full gain bandwidth of erbium-doped fiber amplifiers
Tunable far-infrared laser spectroscopy of hydrogen bonds: The K_a = O(u)â1(g) rotation-tunneling spectrum of the HCI dimer
The ground state K_a =0(u)â1(g) bâtype subband of the rotationâtunneling spectrum of the symmetric ^(35)Clâ^(35)Cl,^(37)Clâ^(37)Cl, and the mixed ^(35)Clâ^(37)Cl hydrogen chloride dimers have been recorded near 26.3 cm^(â1) with subâDoppler resolution in a continuous twoâdimensional supersonic jet with a tunable farâinfrared laser spectrometer. Quadrupole hyperfine structure from the chlorine nuclei has been resolved. From the fitted rotational constants a (H^(35)Cl)_2 centerâofâmass separation of 3.81 Ă
is derived for the K_a =1(g) levels, while the nuclear quadrupole coupling constants yield a vibrationally averaged angular structure for both tunneling states of approximately 20â25 deg for the hydrogen bonded proton and at least 70â75 deg for the external proton. This nearly orthogonal structure agrees well with that predicted by ab initio theoretical calculations, but the observed splittings and intensity alterations of the lines indicate that the chlorine nuclei are made equivalent by a large amplitude tunneling motion of the HCl monomers. A similar geared internal rotation tunneling motion has been found for the HF dimer, but here the effect is much greater. The ground state tunneling splittings are estimated to lie between 15â18 cm^(â1), and the selection rules observed indicate that the trans tunneling path dominates the large amplitude motion, as expected, provided the dimer remains planar. From the observed hyperfine constants, we judge the dimer and its associated tunneling motion to be planar to within 10°
Agribusiness Capstone Courses Design: Objectives and Strategies
This paper discusses the benefits of using strategic management principles as the cornerstone for building the agribusiness capstone experience. The necessity for agribusiness firms to create and implement strategies that build a sustainable competitive advantage in turn necessitates the development of strategic management skills in the leaders/managers of the future. As such, the objectives of a capstone course lean heavily toward the integrative development of strategic decision-making competence. This has a number of implications for the capstone professor in terms of course content, pedagogies, and subsequent measurement of student performance.Agribusiness, Teaching/Communication/Extension/Profession,
Synthesis of luminescent silicon clusters by spark ablation
The synthesis of luminescent nanometer-scale Si clusters by spark ablation from a crystalline Si substrate is described. The cluster source, described in the text, generates clusters in a flowing Ar stream at atmospheric pressure. Electron microscopy reveals that the clusters have diameters in the 2-4 nm size range. The luminescence spectra of the clusters, similar to that of porous Si, are presented
Benefits of DNA-based Technology in Beef Production
This publication discusses how emerging genetic technology coupled with traditional production practice can help beef producers provide high quality products demanded by consumers
- âŠ