1,877 research outputs found

    The relationship between mental toughness and cognitive control: evidence from the item-method directed forgetting task

    Get PDF
    Previous research by the authors found that mental toughness, as measured by the Mental Toughness Questionnaire 48 (MTQ48; Clough, P.J., Earle, K., & Sewell, D. [2002]. Mental toughness: the concept and its measurement. In I. Cockerill (Ed.), Solutions in sport psychology [pp. 32–43]. London: Thomson Publishing), was significantly associated with performance on the list-method directed forgetting task. The current study extends this finding to the item-method directed forgetting task in which the instruction to Remember or Forget is given after each item in the study list. A significant positive association was found between the correct recognition of Remember words and the emotional control subscale of the MTQ48. No significant associations were observed with other measures of mental toughness or personality. The findings are discussed in terms of the relationship between mental toughness and cognitive control

    Uncertainty reconciles complementarity with joint measurability

    Full text link
    The fundamental principles of complementarity and uncertainty are shown to be related to the possibility of joint unsharp measurements of pairs of noncommuting quantum observables. A new joint measurement scheme for complementary observables is proposed. The measured observables are represented as positive operator valued measures (POVMs), whose intrinsic fuzziness parameters are found to satisfy an intriguing pay-off relation reflecting the complementarity. At the same time, this relation represents an instance of a Heisenberg uncertainty relation for measurement imprecisions. A model-independent consideration show that this uncertainty relation is logically connected with the joint measurability of the POVMs in question.Comment: 4 pages, RevTeX. Title of previous version: "Complementarity and uncertainty - entangled in joint path-interference measurements". This new version focuses on the "measurement uncertainty relation" and its role, disentangling this issue from the special context of path interference duality. See also http://www.vjquantuminfo.org (October 2003

    Theoretical Uncertainties in Red Giant Branch Evolution: The Red Giant Branch Bump

    Get PDF
    A Monte Carlo simulation exploring uncertainties in standard stellar evolution theory on the red giant branch of metal-poor globular clusters has been conducted. Confidence limits are derived on the absolute V-band magnitude of the bump in the red giant branch luminosity function (M_v,b) and the excess number of stars in thebump, R_b. The analysis takes into account uncertainties in the primordial helium abundance, abundance of alpha-capture elements, radiative and conductive opacities, nuclear reaction rates, neutrino energy losses, the treatments of diffusion and convection, the surface boundary conditions, and color transformations. The uncertainty in theoretical values for the red giant bump magnitude varies with metallicity between +0.13/-0.12 mag at [Fe/H] = -2.4 and +0.23/-0.21 mag at [Fe/H] = -1.0.Thedominantsourcesofuncertaintyaretheabundanceofthealpha−captureelements,themixinglength,andthelow−temperatureopacities.ThetheoreticalvaluesofMv,bareingoodagreementwithobservations.TheuncertaintyinthetheoreticalvalueofRbis+/−0.01atallmetallicitiesstudied.Thedominantsourcesofuncertaintyaretheabundanceofthealpha−captureelements,themixinglength,andthehigh−temperatureopacities.ThemedianvalueofRbvariesfrom0.44at[Fe/H]=−2.4. The dominant sources of uncertainty are the abundance of the alpha-capture elements, the mixing length, and the low-temperature opacities. The theoretical values of M_v,b are in good agreement with observations. The uncertainty in the theoretical value of R_b is +/-0.01 at all metallicities studied. The dominant sources of uncertainty are the abundance of the alpha-capture elements, the mixing length, and the high-temperature opacities. The median value of R_b varies from 0.44 at [Fe/H] = -2.4 to 0.50 at [Fe/H] = -1.0. These theoretical values for R_b are in agreement with observations.Comment: 30 pages, 6 figures. To appear in Ap

    Adolescents, Adults and Rewards: Comparing Motivational Neurocircuitry Recruitment Using fMRI

    Get PDF
    Background: Adolescent risk-taking, including behaviors resulting in injury or death, has been attributed in part to maturational differences in mesolimbic incentive-motivational neurocircuitry, including ostensible oversensitivity of the nucleus accumbens (NAcc) to rewards. Methodology/Principal Findings: To test whether adolescents showed increased NAcc activation by cues for rewards, or by delivery of rewards, we scanned 24 adolescents (age 12–17) and 24 adults age (22–42) with functional magnetic resonance imaging while they performed a monetary incentive delay (MID) task. The MID task was configured to temporally disentangle potential reward or potential loss anticipation-related brain signal from reward or loss notification-related signal. Subjects saw cues signaling opportunities to win or avoid losing 0,0, .50, or $5 for responding quickly to a subsequent target. Subjects then viewed feedback of their trial success after a variable interval from cue presentation of between 6 to17 s. Adolescents showed reduced NAcc recruitment by reward-predictive cues compared to adult controls in a linear contrast with non-incentive cues, and in a volume-of-interest analysis of signal change in the NAcc. In contrast, adolescents showed little difference in striatal and frontocortical responsiveness to reward deliveries compared to adults. Conclusions/Significance: In light of divergent developmental difference findings between neuroimaging incentive paradigms (as well as at different stages within the same task), these data suggest that maturational differences i

    Association between Antibodies to the MR 67,000 Isoform of Glutamate Decarboxylase (GAD) and Type 1 (Insulin-Dependent) Diabetes Mellitus with Coexisting Autoimmune Polyendocrine Syndrome Type II

    Get PDF
    By using an immunoprecipitation assay, we analysed reactivity of autoantibodies to human recombinant GAD65 and GAD67 in sera from patients with autoimmune polyendocrine syndrome Type II (APS II) with and without Type 1 (insulin-dependent) diabetes mellitus (IDDM) compared to patients with organ-specific autoimmunity. Overall antibodies to GAD65 were correlated with IDDM in all study groups, whereas GAD67 antibodies were associated with IDDM when APS II coexists. Antibodies to GAD65 and GAD67 were detected in 13 (44.8%) and 7 (24.1%) out of 29 APS II patients with IDDM, but in only 4 (13.8%) and 2 (6.9%) out of 29 APS II patients without IDDM, respectively (p < 0.05). In short-standing IDDM (< 1 year), antibodies to GAD67 were significantly more frequent in patients with APS II (5 of 9 [55.6%] subjects) compared to matched diabetic patients without coexisting polyendocrinopathy (1 of 18 [5.6%] subjects) (p < 0.02). The levels of GAD65 (142 ± 90 AU) and GAD67 antibodies (178 ± 95 AU) were significantly higher in patients with polyglandular disease than in patients with isolated IDDM (91 ± 85 AU and 93 ± 57 AU) (p < 0.02). Interestingly, all 11 GAD67 antibody positive subjects also had GAD65 antibodies (p < 0.0001), and in 10 of 11 anti-GAD67 positive sera the GAD67 antibodies could be blocked by either GAD67 or GAD65, suggesting the presence of cross-reactive autoantibodies. No correlation was observed between GAD antibodies and age, sex or any particular associated autoimmune disease, besides IDDM. GAD antibodies were present in only 1 of 6 (16.7%) patients with APS Type I, in 1 of 26 (3.9%) patients with autoimmune thyroid disease but in none of the patients with Addison's disease (n = 16), pernicious anaemia (n = 7) or normal controls (n = 50). Our data suggest distinct antibody specificities reactive to GAD isoforms in APS II and IDDM, which might reflect different mechanisms of autoimmune response in IDDM with coexisting autoimmune polyendocrine autoimmunity

    Auditory but Not Audiovisual Cues Lead to Higher Neural Sensitivity to the Statistical Regularities of an Unfamiliar Musical Style

    Get PDF
    It is still a matter of debate whether visual aids improve learning of music. In a multisession study, we investigated the neural signatures of novel music sequence learning with or without aids (auditory-only: AO, audiovisual: AV). During three training sessions on 3 separate days, participants (nonmusicians) reproduced (note by note on a keyboard) melodic sequences generated by an artificial musical grammar. The AV group (n = 20) had each note color-coded on screen, whereas the AO group (n = 20) had no color indication. We evaluated learning of the statistical regularities of the novel music grammar before and after training by presenting melodies ending on correct or incorrect notes and by asking participants to judge the correctness and surprisal of the final note, while EEG was recorded. We found that participants successfully learned the new grammar. Although the AV group, as compared to the AO group, reproduced longer sequences during training, there was no significant difference in learning between groups. At the neural level, after training, the AO group showed a larger N100 response to lowprobability compared to high-probability notes, suggesting an increased neural sensitivity to statistical properties of the grammar; this effect was not observed in the AV group. Our findings indicate that visual aids might improve sequence reproduction while not necessarily promoting better learning, indicating a potential dissociation between sequence reproduction and learning. We suggest that the difficulty induced by auditory-only input during music training might enhance cognitive engagement, thereby improving neural sensitivity to the underlying statistical properties of the learned material

    GaAs:Mn nanowires grown by molecular beam epitaxy of (Ga,Mn)As at MnAs segregation conditions

    Full text link
    GaAs:Mn nanowires were obtained on GaAs(001) and GaAs(111)B substrates by molecular beam epitaxial growth of (Ga,Mn)As at conditions leading to MnAs phase separation. Their density is proportional to the density of catalyzing MnAs nanoislands, which can be controlled by the Mn flux and/or the substrate temperature. Being rooted in the ferromagnetic semiconductor (Ga,Mn)As, the nanowires combine one-dimensional properties with the magnetic properties of (Ga,Mn)As and provide natural, self assembled structures for nanospintronics.Comment: 13 pages, 6 figure

    Quantum metrology at the limit with extremal Majorana constellations

    Get PDF
    Quantum metrology allows for a tremendous boost in the accuracy of measurement of diverse physical parameters. The estimation of a rotation constitutes a remarkable example of this quantum-enhanced precision. The recently introduced Kings of Quantumness are especially germane for this task when the rotation axis is unknown, as they have a sensitivity independent of that axis and they achieve a Heisenberg-limit scaling. Here, we report the experimental realization of these states by generating up to 21-dimensional orbital angular momentum states of single photons, and confirm their high metrological abilities
    • 

    corecore