1,634 research outputs found

    Observation of VH and VVH cosmic rays with an ionization-Cerenkov detector system

    Get PDF
    Heavy and ultraheavy nuclei observations of cosmic rays using ionization chamber-Cerenkov counter syste

    Large area pulse ionization chamber for measurement of extremely heavy cosmic rays

    Get PDF
    Parallel plate ionization chamber for identifying relativistic cosmic ray nucle

    Cosmic-Ray Spectra in Interstellar Space

    Get PDF
    At energies below ~300 MeV/nuc our knowledge of cosmic-ray spectra outside the heliosphere is obscured by the energy loss that cosmic rays experience during transport through the heliosphere into the inner solar system. This paper compares measurements of secondary electron-capture isotope abundances and cosmic-ray spectra from ACE with a simple model of interstellar propagation and solar modulation in order to place limits on the range of interstellar spectra that are compatible with both sets of data

    The Isotopic Composition of Cosmic Ray Nuclei Beyond the Iron Peak

    Get PDF
    Isotope measurements of cosmic ray nuclei beyond the Fe peak are considered, using the charge region from Z=29 to Zāˆ¼40 as an example. Such studies can address a number of important questions that bear on cosmic ray origin, acceleration, and propagation. One possible approach for measuring isotopes with Zā‰„30 is based on largeā€area arrays of silicon solid state detectors combined with scintillating optical fiber trajectory detectors optical fiber trajectory detectors

    The Phosphorus, Sulfur, Argon, and Calcium Isotopic Composition of the Galactic Cosmic Ray Source

    Get PDF
    Galactic cosmic ray (GCR) measurements of the phosphorus, sulfur, argon, and calcium isotopes made by the Cosmic Ray Isotope Spectrometer aboard the Advanced Composition Explorer are reported over the energy range from ~100 to ~400 MeV nucleon^(ā€“1). The propagation of cosmic rays through the Galaxy and heliosphere is modeled with constraints imposed by measurements. Isotopic source abundance ratios ^(31)P/^(32)S, ^(34)S/^(32)S, ^(38)Ar/^(36)Ar, and ^(44)Ca/^(40)Ca are deduced. The derived ^(31)P/^(32)S ratio is 2.34 Ā± 0.34 times larger than the solar system value, lending further credence to the suggestion that refractory elements are enriched in the GCRs due to the sputtering of ions off grains in the cores of superbubbles. By determining the GCR source abundances of argon (a noble gas) and calcium (a refractory), it is determined that material in grains is accelerated to GCR energies a factor of 6.4 Ā± 0.3 more efficiently than gas-phase material in this charge range. With this information, the dust fraction of phosphorus and sulfur in the interstellar material that is mixed with stellar ejecta to form the GCR seed material is found to be consistent with astronomical observations

    On the Low Energy Decrease in Galactic Cosmic Ray Secondary/Primary Ratios

    Get PDF
    Galactic cosmic ray (GCR) secondary/primary ratios such as B/C and (Sc+Ti+V)/Fe are commonly used to determine the mean amount of interstellar material through which cosmic rays travel before escaping from the Galaxy (Ī›_(esc)). These ratios are observed to be energy-dependent, with a relative maximum at ~1 GeV/nucleon, implying a corresponding peak in Ī›_(esc). The decrease in Ī›_(esc) at energies above 1 GeV/nucleon is commonly taken to indicate that higher energy cosmic rays escape more easily from the Galaxy. The decrease in Ī›_(esc) at energies <1 GeV/nuc is more controversial; suggested possibilities include the effects of a galactic wind or the effects of distributed acceleration of cosmic rays as they pass through the interstellar medium. We consider two possible explanations for the low energy decrease in Ī›_(esc) and attempt to fit the combined, high-resolution measurements of secondary/primary ratios from ~0.1 to 35 GeV/nuc made with the CRIS instrument on ACE and the C2 experiment on HEAO-3. The first possibility, which hypothesizes an additional, local component of low-energy cosmic rays that has passed through very little material, is found to have difficulty simultaneously accounting for the abundance of both B and the Fe-secondaries. The second possibility, suggested by Soutoul and Ptuskin, involves a new form for Ī›_(esc) motivated by their diffusion-convection model of cosmic rays in the Galaxy. Their suggested form for Ī›_(esc)(E) is found to provide an excellent fit to the combined ACE and HEAO data sets

    GCR Neon Isotopic Abundances: Comparison with Wolf-Rayet Star Models and Meteoritic Abundances

    Get PDF
    Measurements of the neon isotopic abundances from the ACE-CRIS experiment are presented. These abundances have been obtained in seven energy intervals over the energy range of ~80ā‰¤Eā‰¤280 MeV/nucleon. The ^(22)Ne/^(20)Ne source ratio is derived using the measured ^(21)Ne/^(20)Ne abundance as a "tracer" of secondary production of the neon isotopes. We find that the ^(22)Ne/^(20)Ne abundance ratio at the cosmic-ray source is a factor of 5.0Ā±0.2 greater than in the solar wind. The GCR ^(22)Ne/^(20)Ne ratio is also shown to be considerably larger than that found in anomalous cosmic rays, solar energetic particles, most meteoritic samples of matter, and interplanetary dust particles. Recent two-component Wolf-Rayet models provide predictions for the ^(22)Ne/^(20)Ne ratio and other isotope ratios. Comparison of the CRIS neon, iron, and nickel isotopic source abundance ratios with predictions indicate possible enhanced abundances of some neutron-rich nuclides that are expected to accompany the ^(22)Ne excess

    The SUPERTIGER Instrument: Measurement of Elemental Abundances of Ultra-Heavy Galactic Cosmic Rays

    Get PDF
    The SuperTIGER (Super Trans-Iron Galactic Element Recorder) instrument was developed to measure the abundances of galactic cosmic-ray elements from _(10)Ne to _(40)Zr with individual element resolution and the high statistics needed to test models of cosmic-ray origins. SuperTIGER also makes exploratory measurements of the abundances of elements with 40 29 and āˆ¼60 with Z >49. Here, we describe the instrument, the methods of charge identification employed, the SuperTIGER balloon flight, and the instrument performance
    • ā€¦
    corecore