35,894 research outputs found

    Exchange Monte Carlo Method and Application to Spin Glass Simulations

    Full text link
    We propose an efficient Monte Carlo algorithm for simulating a ``hardly-relaxing" system, in which many replicas with different temperatures are simultaneously simulated and a virtual process exchanging configurations of these replica is introduced. This exchange process is expected to let the system at low temperatures escape from a local minimum. By using this algorithm the three-dimensional ±J\pm J Ising spin glass model is studied. The ergodicity time in this method is found much smaller than that of the multi-canonical method. In particular the time correlation function almost follows an exponential decay whose relaxation time is comparable to the ergodicity time at low temperatures. It suggests that the system relaxes very rapidly through the exchange process even in the low temperature phase.Comment: 10 pages + uuencoded 5 Postscript figures, REVTe

    Grundstate Properties of the 3D Ising Spin Glass

    Full text link
    We study zero--temperature properties of the 3d Edwards--Anderson Ising spin glass on finite lattices up to size 12312^3. Using multicanonical sampling we generate large numbers of groundstate configurations in thermal equilibrium. Finite size scaling with a zero--temperature scaling exponent y=0.74±0.12y = 0.74 \pm 0.12 describes the data well. Alternatively, a descriptions in terms of Parisi mean field behaviour is still possible. The two scenarios give significantly different predictions on lattices of size ≥123\ge 12^3.Comment: LATEX 9pages,figures upon request ,SCRI-9

    A Pulsed Synchrotron for Muon Acceleration at a Neutrino Factory

    Full text link
    A 4600 Hz pulsed synchrotron is considered as a means of accelerating cool muons with superconducting RF cavities from 4 to 20 GeV/c for a neutrino factory. Eddy current losses are held to less than a megawatt by the low machine duty cycle plus 100 micron thick grain oriented silicon steel laminations and 250 micron diameter copper wires. Combined function magnets with 20 T/m gradients alternating within single magnets form the lattice. Muon survival is 83%.Comment: 4 pages, 1 figures, LaTeX, 5th International Workshop on Neutrino Factories and Superbeams (NuFact 03), 5-11 Jun 2003, New Yor

    Constrained Orthogonal Polynomials

    Full text link
    We define sets of orthogonal polynomials satisfying the additional constraint of a vanishing average. These are of interest, for example, for the study of the Hohenberg-Kohn functional for electronic or nucleonic densities and for the study of density fluctuations in centrifuges. We give explicit properties of such polynomial sets, generalizing Laguerre and Legendre polynomials. The nature of the dimension 1 subspace completing such sets is described. A numerical example illustrates the use of such polynomials.Comment: 11 pages, 10 figure

    A New Approach to Spin Glass Simulations

    Full text link
    We present a recursive procedure to calculate the parameters of the recently introduced multicanonical ensemble and explore the approach for spin glasses. Temperature dependence of the energy, the entropy and other physical quantities are easily calculable and we report results for the zero temperature limit. Our data provide evidence that the large LL increase of the ergodicity time is greatly improved. The multicanonical ensemble seems to open new horizons for simulations of spin glasses and other systems which have to cope with conflicting constraints

    Modeling and parameter uncertainties for aircraft flight control system design

    Get PDF
    Values of plant dynamic uncertainties for some recent aircraft design and development programs are given. Histories of pertinent aerodynamic, inertial, and structural parameter variations are given for a period of time from program initiation to aircraft certification. These data can be used as typical of future vehicles so that control system design concepts are evaluated with due consideration to their sensitivity to uncertainties in plant dynamics

    Entropy-based analysis of the number partitioning problem

    Full text link
    In this paper we apply the multicanonical method of statistical physics on the number-partitioning problem (NPP). This problem is a basic NP-hard problem from computer science, and can be formulated as a spin-glass problem. We compute the spectral degeneracy, which gives us information about the number of solutions for a given cost EE and cardinality mm. We also study an extension of this problem for QQ partitions. We show that a fundamental difference on the spectral degeneracy of the generalized (Q>2Q>2) NPP exists, which could explain why it is so difficult to find good solutions for this case. The information obtained with the multicanonical method can be very useful on the construction of new algorithms.Comment: 6 pages, 4 figure
    • …
    corecore