307 research outputs found

    Nighttime ion composition measurements at the geomagnetic equator

    Get PDF
    Two ion composition profiles, representative of the nighttime equatorial ionosphere between 90 km and 300 km, are presented. These profiles were obtained by two rocket-borne ion mass spectrometers on a single night for solar zenith angles of 112 deg and 165 deg. For both flights, the principal ion above 200 km is O(+). The downward drift of the atomic ions O(+) and N(+), coinciding with the postsunset lowering of the F2 peak, is observed through an enhancement of the density of O(+) at altitudes above 200 km and N(+) above 240 km. Below the drift region, O(+) and N(+) are observed in concentrations larger than expected. The NO(+) altitude distribution retains its shape throughout the night, and below 210 km, is the principal ion. The behavior of O2(+) can be explained by the O(+), electron density and theoretical neutral nitric oxide concentrations. Light metallic ions, including Mg(+), Na(+), and possibly Si(+), are observed to altitudes approaching 300 km and are affected by vertical drift

    Ion composition and drift observations in the nighttime equatorial ionosphere

    Get PDF
    The first in situ measurements of ion composition in the nighttime equatorial E and F region ionospheres (90-300 km) are presented and discussed. These profiles were obtained by two rocket-borne ion mass spectrometers launched from Thumba, India on March 9-10, 1970 at solar zenith angles of 112 deg and 165 deg. Ionosonde data established that the composition was measured at times bounding a period of F region downward drift. During this period the ions O(+) and N(+) were enhanced by one to three orders of magnitude between 220 and 300 km. Below the drift region (200 km), O(+) ceased to be the major ionic constituent, but the concentrations of O(+) and N(+) remained larger than predicted from known radiation sources and loss processes. Here also, both the O2(+) and NO(+) profiles retained nearly the same shape and magnitude throughout the night in agreement with theories assuming scattered UV radiation to be the maintaining source. Light metallic ions including Mg(+), Na(+) and possibly Si(+) were observed to altitude approaching 300 km, while the heavier ions Ca(+) and K(+) were seen in reduced quantity to 200 km. All metal ion profiles exhibited changes which can be ascribed to vertical drifting

    Natural Cycles, Gases

    Get PDF
    The major gaseous components of the exhaust of stratospheric aircraft are expected to be the products of combustion (CO2 and H2O), odd nitrogen (NO, NO2 HNO3), and products indicating combustion inefficiencies (CO and total unburned hydrocarbons). The species distributions are produced by a balance of photochemical and transport processes. A necessary element in evaluating the impact of aircraft exhaust on the lower stratospheric composition is to place the aircraft emissions in perspective within the natural cycles of stratospheric species. Following are a description of mass transport in the lower stratosphere and a discussion of the natural behavior of the major gaseous components of the stratospheric aircraft exhaust

    CO_2 on Titan

    Get PDF
    A sharp stratospheric emission feature at 667 cm^(−1) in the Voyager infrared spectra of Titan is associated with the ν_2 Q branch of CO_2. A coupling of photochemical and radiative transfer theory yields an average mole fraction above the 110 mbar level of ƒCO_2 = 1.5 ± ^(1.5)_(0.8) x 10^(-9), with most of the uncertainty being due to imprecise knowledge of the vertical distribution. CO_2 is found to be in a steady state, with its abundance being regulated principally by the ∼72 K cold trap near the tropopause and secondarily by the rate at which water-bearing meteoritic material enters the top of the atmosphere. An influx of water about 0.4 times that at the top of the terrestrial atmosphere is consistent with a combination of the observed CO_2 abundance and a steady state CO mole fraction of 1.1×10^(−4); the theoretical value for CO is close to the value observed by Lutz et al. (1983), although there are large margins for error in both numbers. If steady state conditions for CO prevail, little information is available regarding the evolution of Titan's atmosphere

    BICEP2. III. Instrumental Systematics

    Get PDF
    In a companion paper, we have reported a >5σ detection of degree scale B-mode polarization at 150 GHz by the Bicep2 experiment. Here we provide a detailed study of potential instrumental systematic contamination to that measurement. We focus extensively on spurious polarization that can potentially arise from beam imperfections. We present a heuristic classification of beam imperfections according to their symmetries and uniformities, and discuss how resulting contamination adds or cancels in maps that combine observations made at multiple orientations of the telescope about its boresight axis. We introduce a technique, which we call "deprojection," for filtering the leading order beam-induced contamination from time-ordered data, and show that it reduces power in Bicep2's actual and null-test BB spectra consistent with predictions using high signal-to-noise beam shape measurements. We detail the simulation pipeline that we use to directly simulate instrumental systematics and the calibration data used as input to that pipeline. Finally, we present the constraints on BB contamination from individual sources of potential systematics. We find that systematics contribute BB power that is a factor of ~10× below Bicep2's three-year statistical uncertainty, and negligible compared to the observed BB signal. The contribution to the best-fit tensor/scalar ratio is at a level equivalent to r = (3–6) × 10^(−3)

    BICEP2. II. Experiment and three-year Data Set

    Get PDF
    We report on the design and performance of the BICEP2 instrument and on its three-year data set. BICEP2 was designed to measure the polarization of the cosmic microwave background (CMB) on angular scales of 1°-5°(ℓ = 40-200), near the expected peak of the B-mode polarization signature of primordial gravitational waves from cosmic inflation. Measuring B-modes requires dramatic improvements in sensitivity combined with exquisite control of systematics. The BICEP2 telescope observed from the South Pole with a 26 cm aperture and cold, on-axis, refractive optics. BICEP2 also adopted a new detector design in which beam-defining slot antenna arrays couple to transition-edge sensor (TES) bolometers, all fabricated on a common substrate. The antenna-coupled TES detectors supported scalable fabrication and multiplexed readout that allowed BICEP2 to achieve a high detector count of 500 bolometers at 150 GHz, giving unprecedented sensitivity to B-modes at degree angular scales. After optimization of detector and readout parameters, BICEP2 achieved an instrument noise-equivalent temperature of 15.8 µK√s. The full data set reached Stokes Q and U map depths of 87.2 nK in square-degree pixels (5.'2 μK) over an effective area of 384 deg^2 within a 1000 deg^2 field. These are the deepest CMB polarization maps at degree angular scales to date. The power spectrum analysis presented in a companion paper has resulted in a significant detection of B-mode polarization at degree scales

    Detection of B-Mode Polarization at Degree Angular Scales by BICEP2

    Get PDF
    We report results from the BICEP2 experiment, a cosmic microwave background (CMB) polarimeter specifically designed to search for the signal of inflationary gravitational waves in the B-mode power spectrum around ℓ∼80. The telescope comprised a 26 cm aperture all-cold refracting optical system equipped with a focal plane of 512 antenna coupled transition edge sensor 150 GHz bolometers each with temperature sensitivity of ≈300  μK_(CMB)√s. BICEP2 observed from the South Pole for three seasons from 2010 to 2012. A low-foreground region of sky with an effective area of 380 square deg was observed to a depth of 87 nK deg in Stokes Q and U. In this paper we describe the observations, data reduction, maps, simulations, and results. We find an excess of B-mode power over the base lensed-ΛCDM expectation in the range 305σ. Through jackknife tests and simulations based on detailed calibration measurements we show that systematic contamination is much smaller than the observed excess. Cross correlating against WMAP 23 GHz maps we find that Galactic synchrotron makes a negligible contribution to the observed signal. We also examine a number of available models of polarized dust emission and find that at their default parameter values they predict power ∼(5–10)× smaller than the observed excess signal (with no significant cross-correlation with our maps). However, these models are not sufficiently constrained by external public data to exclude the possibility of dust emission bright enough to explain the entire excess signal. Cross correlating BICEP2 against 100 GHz maps from the BICEP1 experiment, the excess signal is confirmed with 3σ significance and its spectral index is found to be consistent with that of the CMB, disfavoring dust at 1.7σ. The observed B-mode power spectrum is well fit by a lensed-ΛCDM+tensor theoretical model with tensor-to-scalar ratio r=0.20^(+0.07)_(−0.05), with r=0 disfavored at 7.0σ. Accounting for the contribution of foreground, dust will shift this value downward by an amount which will be better constrained with upcoming data sets

    BICEP2 / Keck Array VII: Matrix based E/B Separation applied to BICEP2 and the Keck Array

    Get PDF
    A linear polarization field on the sphere can be uniquely decomposed into an E-mode and a B-mode component. These two components are analytically defined in terms of spin-2 spherical harmonics. Maps that contain filtered modes on a partial sky can also be decomposed into E-mode and B-mode components. However, the lack of full sky information prevents orthogonally separating these components using spherical harmonics. In this paper, we present a technique for decomposing an incomplete map into E and B-mode components using E and B eigenmodes of the pixel covariance in the observed map. This method is found to orthogonally define E and B in the presence of both partial sky coverage and spatial filtering. This method has been applied to the Bicep2 and the Keck Array maps and results in reducing E to B leakage from ΛCDM E-modes to a level corresponding to a tensor-to-scalar ratio of r < 1 x 10^(-4)

    BICEP2/Keck Array. IV. Optical Characterization and Performance of the BICEP2 and Keck Array Experiments

    Get PDF
    bicep2 and the Keck Array are polarization-sensitive microwave telescopes that observe the cosmic microwave background (CMB) from the South Pole at degree angular scales in search of a signature of inflation imprinted as B-mode polarization in the CMB. bicep2 was deployed in late 2009, observed for three years until the end of 2012 at 150 GHz with 512 antenna-coupled transition edge sensor bolometers, and has reported a detection of B-mode polarization on degree angular scales. The Keck Array was first deployed in late 2010 and will observe through 2016 with five receivers at several frequencies (95, 150, and 220 GHz). bicep2 and the Keck Array share a common optical design and employ the field-proven bicep1 strategy of using small-aperture, cold, on-axis refractive optics, providing excellent control of systematics while maintaining a large field of view. This design allows for full characterization of far-field optical performance using microwave sources on the ground. Here we describe the optical design of both instruments and report a full characterization of the optical performance and beams of bicep2 and the Keck Array at 150 GHz

    BICEP2 / Keck Array IX: New bounds on anisotropies of CMB polarization rotation and implications for axionlike particles and primordial magnetic fields

    Get PDF
    We present the strongest constraints to date on anisotropies of cosmic microwave background (CMB) polarization rotation derived from 150 GHz data taken by the BICEP2 & Keck Array CMB experiments up to and including the 2014 observing season (BK14). The definition of the polarization angle in BK14 maps has gone through self-calibration in which the overall angle is adjusted to minimize the observed TB and EB power spectra. After this procedure, the QU maps lose sensitivity to a uniform polarization rotation but are still sensitive to anisotropies of polarization rotation. This analysis places constraints on the anisotropies of polarization rotation, which could be generated by CMB photons interacting with axionlike pseudoscalar fields or Faraday rotation induced by primordial magnetic fields. The sensitivity of BK14 maps (∼3  μK−arc min) makes it possible to reconstruct anisotropies of the polarization rotation angle and measure their angular power spectrum much more precisely than previous attempts. Our data are found to be consistent with no polarization rotation anisotropies, improving the upper bound on the amplitude of the rotation angle spectrum by roughly an order of magnitude compared to the previous best constraints. Our results lead to an order of magnitude better constraint on the coupling constant of the Chern-Simons electromagnetic term g_(aγ) ≤ 7.2×10^(−2)/H_I (95% confidence) than the constraint derived from the B-mode spectrum, where H_I is the inflationary Hubble scale. This constraint leads to a limit on the decay constant of 10^(−6) ≲ f_a/M_(pl) at mass range of 10^(−33) ≤ ma ≤ 10^(−28)  eV for r=0.01, assuming g_(aγ) ∼ α/(2πf_a) with α denoting the fine structure constant. The upper bound on the amplitude of the primordial magnetic fields is 30 nG (95% confidence) from the polarization rotation anisotropies
    • …
    corecore