research

Nighttime ion composition measurements at the geomagnetic equator

Abstract

Two ion composition profiles, representative of the nighttime equatorial ionosphere between 90 km and 300 km, are presented. These profiles were obtained by two rocket-borne ion mass spectrometers on a single night for solar zenith angles of 112 deg and 165 deg. For both flights, the principal ion above 200 km is O(+). The downward drift of the atomic ions O(+) and N(+), coinciding with the postsunset lowering of the F2 peak, is observed through an enhancement of the density of O(+) at altitudes above 200 km and N(+) above 240 km. Below the drift region, O(+) and N(+) are observed in concentrations larger than expected. The NO(+) altitude distribution retains its shape throughout the night, and below 210 km, is the principal ion. The behavior of O2(+) can be explained by the O(+), electron density and theoretical neutral nitric oxide concentrations. Light metallic ions, including Mg(+), Na(+), and possibly Si(+), are observed to altitudes approaching 300 km and are affected by vertical drift

    Similar works