519 research outputs found
Classification and Recovery of Radio Signals from Cosmic Ray Induced Air Showers with Deep Learning
Radio emission from air showers enables measurements of cosmic particle
kinematics and identity. The radio signals are detected in broadband Megahertz
antennas among continuous background noise. We present two deep learning
concepts and their performance when applied to simulated data. The first
network classifies time traces as signal or background. We achieve a true
positive rate of about 90% for signal-to-noise ratios larger than three with a
false positive rate below 0.2%. The other network is used to clean the time
trace from background and to recover the radio time trace originating from an
air shower. Here we achieve a resolution in the energy contained in the trace
of about 20% without a bias for of the traces with a signal. The
obtained frequency spectrum is cleaned from signals of radio frequency
interference and shows the expected shape.Comment: 20 pages, 13 figures, resubmitted to JINS
Coherent Radiation from Extensive Air Showers in the Ultra-High Frequency Band
Using detailed Monte Carlo simulations we have characterized the features of
the radio emission of inclined air showers in the Ultra-High Frequency band
(300 MHz - 3 GHz). The Fourier-spectrum of the radiation is shown to have a
sizable intensity well into the GHz frequency range. The emission is mainly due
to transverse currents induced by the geomagnetic field and to the excess
charge produced by the Askaryan effect. At these frequencies only a
significantly reduced volume of the shower around the axis contributes
coherently to the signal observed on the ground. The size of the coherently
emitting volume depends on frequency, shower geometry and observer position,
and is interpreted in terms of the relative time delays. At ground level, the
maximum emission at high frequencies is concentrated in an elliptical ring-like
region around the intersection of a Cherenkov cone with its vertex at shower
maximum and the ground. The frequency spectrum of inclined showers when
observed at positions that view shower maximum in the Cherenkov direction, is
shown to be in broad agreement with the pulses detected by the Antarctic
Impulsive Transient Antenna (ANITA) experiment, making the interpretation that
they are due to Ultra-High Energy Cosmic Ray atmospheric showers consistent
with our simulations. These results are also of great importance for
experiments aiming to detect molecular bremsstrahlung radiation in the GHz
range as they present an important background for its detection.Comment: 8 pages, 8 figure
First results of the CROME experiment
It is expected that a radio signal in the microwave range is produced in the
atmosphere due to molecular bremsstrahlung initiated by extensive air showers.
The CROME (Cosmic-Ray Observation via Microwave Emission) experiment was built
to search for this microwave signal. Radiation from the atmosphere is monitored
in the extended C band (3.4--4.2 GHz) in coincidence with showers detected by
the KASCADE-Grande experiment. The detector setup consists of several parabolic
antennas and fast read-out electronics. The sensitivity of the detector has
been measured with different methods. First results after half a year of data
taking are presented.Comment: Contributions to the 32nd International Cosmic Ray Conference,
Beijing, China, August 201
GZK Photons Above 10 EeV
We calculate the flux of "GZK-photons", namely the flux of photons produced
by extragalactic nucleons through the resonant photoproduction of pions, the so
called GZK effect. This flux depends on the UHECR spectrum on Earth, of the
spectrum of nucleons emitted at the sources, which we characterize by its slope
and maximum energy, on the distribution of sources and on the intervening
cosmological backgrounds, in particular the magnetic field and radio
backgrounds. For the first time we calculate the GZK photons produced by
nuclei. We calculate the possible range of the GZK photon fraction of the total
UHECR flux for the AGASA and the HiRes spectra. We find that for nucleons
produced at the sources it could be as large as a few % and as low as 10^{-4}
above 10 EeV. For nuclei produced at the sources the maximum photon fraction is
a factor of 2 to 3 times smaller above 10 EeV but the minimum could be much
smaller than for nucleons. We also comment on cosmogenic neutrino fluxes.Comment: 20 pages, 9 figures (21 panels), iopart.cls and iopart12.clo needed
to typese
Highlights from the Pierre Auger Observatory
The Pierre Auger Observatory is the world's largest cosmic ray observatory.
Our current exposure reaches nearly 40,000 km str and provides us with an
unprecedented quality data set. The performance and stability of the detectors
and their enhancements are described. Data analyses have led to a number of
major breakthroughs. Among these we discuss the energy spectrum and the
searches for large-scale anisotropies. We present analyses of our X
data and show how it can be interpreted in terms of mass composition. We also
describe some new analyses that extract mass sensitive parameters from the 100%
duty cycle SD data. A coherent interpretation of all these recent results opens
new directions. The consequences regarding the cosmic ray composition and the
properties of UHECR sources are briefly discussed.Comment: 9 pages, 12 figures, talk given at the 33rd International Cosmic Ray
Conference, Rio de Janeiro 201
Composition of UHECR and the Pierre Auger Observatory Spectrum
We fit the recently published Pierre Auger ultra-high energy cosmic ray
spectrum assuming that either nucleons or nuclei are emitted at the sources. We
consider the simplified cases of pure proton, or pure oxygen, or pure iron
injection. We perform an exhaustive scan in the source evolution factor, the
spectral index, the maximum energy of the source spectrum Z E_{max}, and the
minimum distance to the sources. We show that the Pierre Auger spectrum agrees
with any of the source compositions we assumed. For iron, in particular, there
are two distinct solutions with high and low E_{max} (e.g. 6.4 10^{20} eV and 2
10^{19} eV) respectively which could be distinguished by either a large
fraction or the near absence of proton primaries at the highest energies. We
raise the possibility that an iron dominated injected flux may be in line with
the latest composition measurement from the Pierre Auger Observatory where a
hint of heavy element dominance is seen.Comment: 19 pages, 6 figures (33 panels)- Uses iopart.cls and iopart12.clo- In
version 2: addition of a few sentences and two reference
- …
