16 research outputs found

    Optical observations of enhanced activity of the 2005 Draconid meteor shower

    No full text
    Context.The enhanced activity of the Draconid meteor shower was observed on October 8, 2005 using video and photographic cameras. Aims.The aim of this paper is to use a higher than usual number of recorded meteors to look at some physical properties of the Draconid meteoroids, to describe the activity profile, and to infer meteor orbits. Methods.Video data on meteors are used for the determination of the meteor shower activity. Double station data provide precise beginning heights of the meteors as well as their radiants and orbits. Beginning heights and light curves of all meteors are used for investigation of meteoroid properties. Results.Only the descending branch of the enhanced activity was observed between 17:30 and 19 UT. The mass distribution index is similar to the 1998 return. Beginning heights of the Draconid meteors are several kilometres higher in comparison with other meteors of similar velocity. Light curves are nearly symmetrical, with a slight preference of early maxima. Both results are consistent with the very fragile nature of Draconid meteoroids

    Properties of small meteoroids studied by meteor video observations

    No full text
    Aims. The complex study of millimetre-sized meteoroids can reveal more about the structure and origin of population of these meteoroids. Methods. Double-station video observations, paired with spectroscopic video observations, were used to study small meteoroids. In total 152 sporadic and shower meteors of maximum brightness between magnitude −5 and +3 were analysed. Spectral classification was based on time-integrated intensities of lines of Na, Mg, and Fe. Meteor light curves and deceleration were fitted by the grain erosion model. Heliocentric orbits of all meteors were computed. Monochromatic light curves were constructed in order to study differential ablation. The length of meteor wakes was evaluated as well. Results. The variety of properties among millimetre-sized meteoroids proved different sources and histories of this material. Meteoroids that contain small grains tend to release their sodium early. For given grain sizes, the sodium in Na-poor meteoroids is released earlier than in meteors without sodium depletion. Overall, meteoroids with sodium depletion are revealed to have different structures: they have stronger material without very small grains and they do not show very bright wakes. Two iron meteoroids on Halley-type orbits were observed, thereby supporting the idea of large-scale mixing of material in the early solar system. The distribution of grain sizes of Jupiter-family members was in good agreement with results from the COSIMA instrument on the ROSETTA probe

    Catalogue of representative meteor spectra

    No full text
    Aims. We present a library of low-resolution meteor spectra that includes sporadic meteors, members of minor meteor showers, and major meteor showers. These meteors are in the magnitude range from +2 to −3, corresponding to meteoroid sizes from 1 mm to 10 mm. Methods. Parallel double-station video observations allowed us to compute heliocentric orbits for all meteors. Most observations were performed during the periods of activity of major meteor showers in the years between 2006 and 2012. Spectra are classified according to relative intensities of the low-temperature emission lines of Mg, Na, and Fe. Results. Shower meteors were found to be of normal composition, except for Southern δ Aquariids and some members of the Geminid shower, neither of which have Na in the meteor spectra. Variations in Na content are typical for the Geminid shower. Three populations of Na-free mereoroids were identified. The first population are iron meteorites, which have an asteroidal-chondritic origin, but one meteoroid with low perihelion (0.11 AU) was found among the iron meteorites. The second population were Sun-approaching meteoroids in which sodium is depleted by thermal desorption. The third population were Na-free meteoroids of cometary origin. Long exposure to cosmic rays on the surface of comets in the Oort cloud and disintegration of this crust might be the origin of this population of meteoroids

    Search for pairs and groups in the 2006 Geminid meteor shower

    No full text
    Context. The existence of pairs and groups of meteors during meteor showers has been an open question for a long time. The double-station video observation of the 2006 Geminid meteor shower, one of the most active annual showers, is used for the search of such events. Aims. The goal of the paper is to determine whether the observed pairs of Geminid meteors are real events or cases of random coincidence. Methods. The atmospheric trajectories of the observed meteors, photometric masses, and both time and spatial distances of meteoroids in the atmosphere were determined using a double-station video observation. The time gaps between them were analysed statistically. The Monte Carlo simulation was used for the determination of the probability of random pairings. Results. A higher than expected number of candidates for pairs was found among 2006 Geminids. An evaluation of the Poisson distribution shows that a significant fraction of them may be real cases. However, the Monte Carlo simulation did not confirm this result and provided a different view. Analysis of geometrical positions of candidate pairs also did not support the presence of real pairs and groups. Although we cannot exclude that some of them may be physically connected pairs, all the observed cases can be explained as the coincidental appearance of unrelated meteors

    Herculid meteor shower in the night of 30/31 May 2022 and the meteoroid properties

    No full text
    Context. A τ Herculid meteor outburst or even storm was predicted to occur by several models around 5 UT on 31 May 2022 as a consequence of the break-up of comet 73P/Schwassmann-Wachmann 3 in 1995. The multi-instrument and multi-station experiment was carried out within the Czech Republic to cover possible earlier activity of the shower between 21 and 1 UT on 30/31 May. Aims. We report meteor shower activity that occurred before the main peak and provide a comparison with the dynamical simulations of the stream evolution. The physical properties of the meteoroids are also studied. Methods. Multi-station observations using video and photographic cameras were used to calculate the atmospheric trajectories and heliocentric orbits of the meteors. Their arrival times were used to determine the shower activity profile. The physical properties of the meteoroids were evaluated using various criteria based on meteor heights. The evolution of the spectra of three meteors were studied as well. Results. This annual but poor meteor shower was active for the whole night many hours before the predicted peak. A comparison with dynamical models shows that a mix of older material ejected after 1900 and fresh particles originating from the 1995 comet fragmentation event was observed. The radiant positions of both groups of meteors were identified and were found to agree well with the simulated radiants. Meteoroids with masses between 10 mg and 10 kg were recorded. The mass distribution index was slightly higher than 2. The study of the physical properties shows that the τ Herculid meteoroids belong to the most fragile particles observed ever, especially among higher masses of meteoroids. The exceptionally bright bolide observed during the dawn represents a challenge for the dynamical simulations as it is necessary to explain how a half-metre body was transferred to the vicinity of the Earth at the same time as millimetre-sized particles
    corecore