43 research outputs found

    Stabilizing Fluid-Fluid Displacements in Porous Media Through Wettability Alteration

    Get PDF
    We study experimentally how wettability impacts fluid-fluid-displacement patterns in granular media. We inject a low-viscosity fluid (air) into a thin bed of glass beads initially saturated with a more-viscous fluid (a water-glycerol mixture). Chemical treatment of glass surfaces allows us to control the wetting properties of the medium and modify the contact angle θ from 5° (drainage) to 120° (imbibition). We demonstrate that wettability exerts a powerful influence on the invasion morphology of unfavorable mobility displacements: increasing θ stabilizes fluid invasion into the granular pack at all capillary numbers. In particular, we report the striking observation of a stable radial displacement at low capillary numbers, whose origin lies on the cooperative nature of fluid invasion at the pore scale.Eni S.p.A. (Firm)ARCO Chair in Energy Studie

    Distributary Channel Networks as Moving Boundaries: Causes and Morphodynamic Effects

    Get PDF
    We propose an exploratory model to describe the morphodynamics of distributary channel network growth on river deltas. The interface between deep channels and the shallow, unchannelized delta front deposits is modeled as a moving boundary. Steady flow over the unchannelized delta front is friction dominated and modeled by Laplace\u27s equation. Shear stress along the network boundary produces nonlinear erosion rates at the interface, causing the boundary to move and network elements (channels and branches) to form. The model was run for boundary conditions resembling the Wax Lake Delta in coastal Louisiana, 20 parameterizations of sediment transport, and 3 parameterizations of discharge. In each case, the model produced a complex channel network with channel number, width, bifurcation angle, and channel shape depending on the sediment transport formula. For reasonable sediment transport parameters and gradually increasing water discharge, the model produced network characteristics and progradation rates similar to the Wax Lake Delta. This suggests that the model contains the processes responsible for network growth, despite its abstract formulation

    Diffusion-driven transition between two regimes of viscous fingering

    No full text

    Nonlinear Saffman-Taylor instability

    Get PDF
    We show, both theoretically and experimentally, that the interface between two viscous fluids in a Hele-Shaw cell can be nonlinearly unstable before the Saffman-Taylor linear instability point is reached. We identify the family of exact elastica solutions [Nye et al., Eur. J. Phys. 5, 73 (1984)] as the unstable branch of the corresponding subcritical bifurcation which ends up at a topological singularity defined by interface pinchoff. We devise an experimental procedure to prepare arbitrary initial conditions in a Hele-Shaw cell. This is used to test the proposed bifurcation scenario and quantitatively asses its practical relevance

    Viscous fingering as a paradigm of interfacial pattern formation: Recent results and new challenges

    Get PDF
    We review recent results on dynamical aspects of viscous fingering. The Saffman¿Taylor instability is studied beyond linear stability analysis by means of a weakly nonlinear analysis and the exact determination of the subcritical branch. A series of contributions pursuing the idea of a dynamical solvability scenario associated to surface tension in analogy with the traditional selection theory is put in perspective and discussed in the light of the asymptotic theory of Tanveer and co-workers. The inherently dynamical singular effects of surface tension are clarified. The dynamical role of viscosity contrast is explored numerically. We find that the basin of attraction of the Saffman¿Taylor finger depends on viscosity contrast, and that the sensitivity to this parameter is maximal in the usual limit of high viscosity contrast. The competing attractors are identified as closed bubble solutions. We briefly report on recent results and work in progress concerning rotating Hele-Shaw flows, topological singularities and wetting effects, and also discuss future directions in the context of viscous fingerin
    corecore