15,246 research outputs found
Design of a variable-focal-length optical system
Requirements to place an entire optical system with a variable focal length ranging from 20 to 200 cm within a overall length somewhat less than 100 cm placed severe restrictions on the design of a zoom lens suitable for use on a comet explorer. The requirements of a wavelength range of 0.4 to 1.0 microns produced even greater limitations on the possibilities for a design that included a catadioptric (using mirrors and glass) front and followed by a zooming refractive portion. Capabilities available commercial zoom lenses as well as patents of optical systems are reviewed. Preliminary designs of the refractive optics zoom lens and the catadioptric system are presented and evaluated. Of the two, the latter probably has the best chance of success, so long as the shortest focal lengths are not really needed
Orbital ordering in the ferromagnetic insulator CsAgF from first principles
We found, using density-functional theory calculations within the generalized
gradient approximation, that CsAgF is stabilized in the insulating
orthorhombic phase rather than in the metallic tetragonal phase. The lattice
distortion present in the orthorhombic phase corresponds to the
/ hole-orbital ordering of the Ag ions, and
this orbital ordering leads to the observed ferromagnetism, as confirmed by the
present total-energy calculations. This picture holds in the presence of
moderate 4d-electron correlation. The results are compared with the picture of
ferromagnetism based on the metallic tetragonal phase.Comment: 5 pages, 4 figures, 1 table; a few energy/moment entries in Table I
are corrected due to a proper treatment of the Ag 4s semicore stat
A General Information Theoretical Proof for the Second Law of Thermodynamics
We show that the conservation and the non-additivity of the information,
together with the additivity of the entropy make the entropy increase in an
isolated system. The collapse of the entangled quantum state offers an example
of the information non-additivity. Nevertheless, the later is also true in
other fields, in which the interaction information is important. Examples are
classical statistical mechanics, social statistics and financial processes. The
second law of thermodynamics is thus proven in its most general form. It is
exactly true, not only in quantum and classical physics but also in other
processes, in which the information is conservative and non-additive.Comment: 4 page
Specific protein-protein binding in many-component mixtures of proteins
Proteins must bind to specific other proteins in vivo in order to function.
The proteins must bind only to one or a few other proteins of the of order a
thousand proteins typically present in vivo. Using a simple model of a protein,
specific binding in many component mixtures is studied. It is found to be a
demanding function in the sense that it demands that the binding sites of the
proteins be encoded by long sequences of bits, and the requirement for specific
binding then strongly constrains these sequences. This is quantified by the
capacity of proteins of a given size (sequence length), which is the maximum
number of specific-binding interactions possible in a mixture. This calculation
of the maximum number possible is in the same spirit as the work of Shannon and
others on the maximum rate of communication through noisy channels.Comment: 13 pages, 3 figures (changes for v2 mainly notational - to be more in
line with notation in information theory literature
Measuring the effective complexity of cosmological models
We introduce a statistical measure of the effective model complexity, called
the Bayesian complexity. We demonstrate that the Bayesian complexity can be
used to assess how many effective parameters a set of data can support and that
it is a useful complement to the model likelihood (the evidence) in model
selection questions. We apply this approach to recent measurements of cosmic
microwave background anisotropies combined with the Hubble Space Telescope
measurement of the Hubble parameter. Using mildly non-informative priors, we
show how the 3-year WMAP data improves on the first-year data by being able to
measure both the spectral index and the reionization epoch at the same time. We
also find that a non-zero curvature is strongly disfavored. We conclude that
although current data could constrain at least seven effective parameters, only
six of them are required in a scheme based on the Lambda-CDM concordance
cosmology.Comment: 9 pages, 4 figures, revised version accepted for publication in PRD,
updated with WMAP3 result
Recommended from our members
Gas separation membrane
A method of fabricating a gas separation membrane includes providing a coextruded multilayer film that includes a first polymer layer formed of a first polymer material and a second polymer layer formed of a second polymer material, the first polymer material having a first gas permeability. The coextruded multilayer film is axially oriented such that the second polymer layer has a second gas permeability that is greater than the first gas permeability.Board of Regents, University of Texas Syste
Structures and Electromagnetic Properties of New Metal-Ordered Manganites; RBaMn_{2}O_{6} (R = Y and Rare Earth Elements)
New metal-ordered manganites RBaMn_{2}O_{6} have been synthesized and
investigated in the structures and electromagnetic properties. RBaMn_{2}O_{6}
can be classified into three groups from the structural and electromagnetic
properties. The first group (R = La, Pr and Nd) has a metallic ferromagnetic
transition, followed by an A-type antiferromagnetic transition in
PrBaMn_{2}O_{6}. The second group (R = Sm, Eu and Gd) exhibits a charge-order
transition, followed by an antiferromagnetic long range ordering. The third
group (R = Tb, Dy and Ho) shows successive three phase transitions, the
structural, charge/orbital-order and magnetic transitions, as observed in
YBaMn_{2}O_{6}. Comparing to the metal-disordered manganites
(R^{3+}_{0.5}A^{2+}_{0.5})MnO_{3}, two remarkable features can be recognized in
RBaMn_{2}O_{6}; (1) relatively high charge-order transition temperature and (2)
the presence of structural transition above the charge-order temperature in the
third group. We propose a possible orbital ordering at the structural
transition, that is a possible freezing of the orbital, charge and spin degrees
of freedom at the independent temperatures in the third group. These features
are closely related to the peculiar structure that the MnO_{2} square-lattice
is sandwiched by the rock-salt layers of two kinds, RO and BaO with extremely
different lattice-sizes.Comment: 5 pages, 4 figures, submitted to J. Phys. Soc. Jp
IrSr_2Sm_{1.15}Ce_{0.85}Cu_{2.175}O_{10}: A Novel Reentrant Spin-Glass Material
A new iridium containing layered cuprate material,
IrSr_2Sm_{1.15}Ce_{0.85}Cu_{2.175}O_{10, has been synthesized by conventional
ambient-pressure solid-state techniques. The material's structure has been
fully characterized by Rietveld refinement of high resolution synchrotron X-ray
diffraction data; tilts and rotations of the IrO_6 octahedra are observed as a
result of a bond mismatch between in-plane Ir-O and Cu-O bond lengths.
DC-susceptibility measurements evidence a complex set of magnetic transitions
upon cooling that are characteristic of a reentrant spin-glass ground-state.
The glassy character of the lowest temperature, Tg=10 K, transition is further
confirmed by AC-susceptibility measurements, showing a characteristic frequency
dependence that can be well fitted by the Vogel-Fulcher law and yields a value
of \Delta_(T_f)/[T_f \Delta log({\omega})] =0.015(1), typical of dilute
magnetic systems. Electronic transport measurements show the material to be
semiconducting at all temperatures with no transition to a superconducting
state. Negative magnetoresistance is observed when the material is cooled below
25 K, and the magnitude of this magnetoresistance is seen to increase upon
cooling to a value of MR = -9 % at 8 K
- …