2,200 research outputs found

    Stability of the Submillimeter Brightness of the Atmosphere Above Mauna Kea, Chajnantor and the South Pole

    Full text link
    The summit of Mauna Kea in Hawaii, the area near Cerro Chajnantor in Chile, and the South Pole are sites of large millimeter or submillimeter wavelength telescopes. We have placed 860 GHz sky brightness monitors at all three sites and present a comparative study of the measured submillimeter brightness due to atmospheric thermal emission. We report the stability of that quantity at each site.Comment: 6 figure

    The wintertime South Pole tropospheric water vapor column: Comparisons of radiosonde and recent terahertz radiometry, use of the saturated column as a proxy measurement, and inference of decadal trends

    Get PDF
    We use a fifty-year record of wintertime radiosonde observations at the South Pole to estimate the precipitable water vapor column (PWV) over the entire period. Humidity data from older radiosondes is of limited reliability; however, we think an estimation of PWV is possible using temperature data because the wintertime lower troposphere is very close to saturated. From temperature data we derived PWV_SAT which is the PWV if the troposphere was saturated over the entire column. Comparisons to recent radiosonde humidity data indicate that PWV ≃ 0.88PWV_SAT. Since 1998 a CMU/NRAO 860 GHz atmospheric radiometer has been operating at the South Pole producing zenith opacity data, τo. It is expected that τo ∝ PWV, and also τ_o ∝ PWV_SAT, since the lower atmospheric column is near to saturation. We compare trends in τo, PWV_SAT, and PWV. PWV and PWV_SAT showed little trend in the last fifty years, 1961 to 2010, except perhaps in the last two decades, when PWVSAT was below average, followed by an increasing trend to above average. This increasing trend in the last decade was also observed in τo, except for the final two years when it appears that something changed in the instrument response. PWV_SAT is a useful metric for estimating PWV in the earlier years of wintertime South Pole radiosonde, and it is generally useful for evaluating the wintertime performance of radiosonde humidity and atmospheric opacity instrumentation

    Global Energetics of Thirty-Eight Large Solar Eruptive Events

    Get PDF
    We have evaluated the energetics of 38 solar eruptive events observed by a variety of spacecraft instruments between February 2002 and December 2006, as accurately as the observations allow. The measured energetic components include: (1) the radiated energy in the GOES 1 - 8 A band; (2) the total energy radiated from the soft X-ray (SXR) emitting plasma; (3) the peak energy in the SXR-emitting plasma; (4) the bolometric radiated energy over the full duration of the event; (5) the energy in flare-accelerated electrons above 20 keV and in flare-accelerated ions above 1 MeV; (6) the kinetic and potential energies of the coronal mass ejection (CME); (7) the energy in solar energetic particles (SEPs) observed in interplanetary space; and (8) the amount of free (nonpotential) magnetic energy estimated to be available in the pertinent active region. Major conclusions include: (1) the energy radiated by the SXR-emitting plasma exceeds, by about half an order of magnitude, the peak energy content of the thermal plasma that produces this radiation; (2) the energy content in flare-accelerated electrons and ions is sufficient to supply the bolometric energy radiated across all wavelengths throughout the event; (3) the energy contents of flare-accelerated electrons and ions are comparable; (4) the energy in SEPs is typically a few percent of the CME kinetic energy (measured in the rest frame of the solar wind); and (5) the available magnetic energy is sufficient to power the CME, the flare-accelerated particles, and the hot thermal plasma

    The Yarkovsky Drift's Influence on NEAs: Trends and Predictions with NEOWISE Measurements

    Full text link
    We used WISE-derived geometric albedos (p_V) and diameters, as well as geometric albedos and diameters from the literature, to produce more accurate diurnal Yarkovsky drift predictions for 540 near-Earth asteroids (NEAs) out of the current sample of \sim 8,800 known objects. As ten of the twelve objects with the fastest predicted rates have observed arcs of less than a decade, we list upcoming apparitions of these NEAs to facilitate observations.Comment: Accepted for publication by The Astronomical Journal. 41 pages, 3 figure

    The Use of compost (built-up) litter in chicken houses

    Get PDF

    Millimeter Wavelength Brightness Fluctuations of the Atmosphere Above the South Pole

    Full text link
    We report measurements of the millimeter wavelength brightness fluctuations produced by the atmosphere above the South Pole made with the Arcminute Cosmology Bolometer Array Receiver (ACBAR). The data span the 2002 Austral winter during which ACBAR was mounted on the Viper telescope at the South Pole. We recover the atmospheric signal in the presence of instrument noise by calculating the correlation between signals from distinct elements of the ACBAR bolometer array. With this method, it is possible to measure atmospheric brightness fluctuations with high SNR even under the most stable atmospheric conditions. The observed atmospheric signal is characterized by the parameters of the Komolgorov-Taylor (KT) model, which are the amplitude and power law exponent describing the atmospheric power spectrum, and the two components of the wind angular velocity at the time of the observation. The KT model is typically a good description of the observed fluctuations, and fits to the data produce values of the Komolgorov exponent that are consistent with theoretical expectations. By combining the wind angular velocity results with measurements of the wind linear velocity, we find that the altitude of the observed atmospheric fluctuations is consistent with the distribution of water vapor determined from radiosonde data. For data corresponding to frequency passbands centered on 150, 219, and 274 GHz, we obtain median fluctuation power amplitudes of [10, 38, 74] mK^{2} rad^{-5/3} in Rayleigh-Jeans temperature units. Comparing with previous work, we find that these median amplitudes are approximately an order of magnitude smaller than those found at the South Pole during the Austral summer and at least 30 times lower than found at the ALMA site in the Atacama desert.Comment: 13 pages, 15 figures, submitted to ApJ, vertical margins fixe

    Technology Development for the Caltech Submillimeter Observatory Balanced Receivers

    Full text link
    The Caltech Submillimeter Observatory (CSO) is located on top of Mauna Kea, Hawaii, at an altitude of 4.2 km. The existing suite of facility heterodyne receivers covering the submillimeter band is rapidly aging and in need of replacement. To facilitate deep integrations and automated spectral line surveys, a family of remote programmable, synthesized, dual-frequency balanced receivers covering the astronomical important 180 - 720 GHz atmospheric windows is in an advanced stage of development. Installation of the first set of receivers is expected in the spring of 2012. Dual-frequency observation will be an important mode of operation offered by the new facility instrumentation. Two band observations are accomplished by separating the H and V polarizations of the incoming signal and routing them via folded optics to the appropriate polarization sensitive balanced mixer. Scientifically this observation mode facilitates pointing for the higher receiver band under mediocre weather conditions and a doubling of scientific throughput (2 x 4 GHz) under good weather conditions.Comment: 12 pages, 17 figures; IEEE Terahertz Science & Technology, January 2012, Volume 2, Issue

    Hole-burning experiments within solvable glassy models

    Full text link
    We reproduce the results of non-resonant spectral hole-burning experiments with fully-connected (equivalently infinite-dimensional) glassy models that are generalizations of the mode-coupling approach to nonequilibrium situations. We show that an ac-field modifies the integrated linear response and the correlation function in a way that depends on the amplitude and frequency of the pumping field. We study the effect of the waiting and recovery-times and the number of oscillations applied. This calculation will help descriminating which results can and which cannot be attributed to dynamic heterogeneities in real systems.Comment: 4 pages, 8 figures, RevTe

    The Antarctic Submillimeter Telescope and Remote Observatory (AST/RO)

    Get PDF
    AST/RO, a 1.7 m diameter telescope for astronomy and aeronomy studies at wavelengths between 200 and 2000 microns, was installed at the South Pole during the 1994-1995 Austral summer. The telescope operates continuously through the Austral winter, and is being used primarily for spectroscopic studies of neutral atomic carbon and carbon monoxide in the interstellar medium of the Milky Way and the Magellanic Clouds. The South Pole environment is unique among observatory sites for unusually low wind speeds, low absolute humidity, and the consistent clarity of the submillimeter sky. Four heterodyne receivers, an array receiver, three acousto-optical spectrometers, and an array spectrometer are installed. A Fabry-Perot spectrometer using a bolometric array and a Terahertz receiver are in development. Telescope pointing, focus, and calibration methods as well as the unique working environment and logistical requirements of the South Pole are described.Comment: 57 pages, 15 figures. Submitted to PAS
    corecore