39,282 research outputs found

    Evolutionary L∞ identification and model reduction for robust control

    Get PDF
    An evolutionary approach for modern robust control oriented system identification and model reduction in the frequency domain is proposed. The technique provides both an optimized nominal model and a 'worst-case' additive or multiplicative uncertainty bounding function which is compatible with robust control design methodologies. In addition, the evolutionary approach is applicable to both continuous- and discrete-time systems without the need for linear parametrization or a confined problem domain for deterministic convex optimization. The proposed method is validated against a laboratory multiple-input multiple-output (MIMO) test rig and benchmark problems, which show a higher fitting accuracy and provides a tighter L�¢���� error bound than existing methods in the literature do

    On the Throughput of Channels that Wear Out

    Full text link
    This work investigates the fundamental limits of communication over a noisy discrete memoryless channel that wears out, in the sense of signal-dependent catastrophic failure. In particular, we consider a channel that starts as a memoryless binary-input channel and when the number of transmitted ones causes a sufficient amount of damage, the channel ceases to convey signals. Constant composition codes are adopted to obtain an achievability bound and the left-concave right-convex inequality is then refined to obtain a converse bound on the log-volume throughput for channels that wear out. Since infinite blocklength codes will always wear out the channel for any finite threshold of failure and therefore cannot convey information at positive rates, we analyze the performance of finite blocklength codes to determine the maximum expected transmission volume at a given level of average error probability. We show that this maximization problem has a recursive form and can be solved by dynamic programming. Numerical results demonstrate that a sequence of block codes is preferred to a single block code for streaming sources.Comment: 23 pages, 1 table, 11 figures, submitted to IEEE Transactions on Communication

    Exciton and biexciton energies in bilayer systems

    Get PDF
    We report calculations of the energies of excitons and biexcitons in ideal two-dimensional bilayer systems within the effective-mass approximation with isotropic electron and hole masses. The exciton energies are obtained by a simple numerical integration technique, while the biexciton energies are obtained from diffusion quantum Monte Carlo calculations. The exciton binding energy decays as the inverse of the separation of the layers, while the binding energy of the biexciton with respect to dissociation into two separate excitons decays exponentially

    Detection of zeptojoule microwave pulses using electrothermal feedback in proximity-induced Josephson junctions

    Full text link
    We experimentally investigate and utilize electrothermal feedback in a microwave nanobolometer based on a normal-metal (\mbox{Au}_{x}\mbox{Pd}_{1-x}) nanowire with proximity-induced superconductivity. The feedback couples the temperature and the electrical degrees of freedom in the nanowire, which both absorbs the incoming microwave radiation, and transduces the temperature change into a radio-frequency electrical signal. We tune the feedback in situ and access both positive and negative feedback regimes with rich nonlinear dynamics. In particular, strong positive feedback leads to the emergence of two metastable electron temperature states in the millikelvin range. We use these states for efficient threshold detection of coherent 8.4 GHz microwave pulses containing approximately 200 photons on average, corresponding to 1.1 \mbox{ zJ} \approx 7.0 \mbox{ meV} of energy

    Implementation of Design Changes Towards a More Reliable, Hands-off Magnetron Ion Source

    Full text link
    As the main HH^{-} ion source for the accelerator complex, magnetron ion sources have been used at Fermilab since the 1970s. At the offline test stand, new R&D is carried out to develop and upgrade the present magnetron-type sources of HH^{-} ions of up to 80 mA and 35 keV beam energy in the context of the Proton Improvement Plan. The aim of this plan is to provide high-power proton beams for the experiments at FNAL. In order to reduce the amount of tuning and monitoring of these ion sources, a new electronic system consisting of a current-regulated arc discharge modulator allow the ion source to run at a constant arc current for improved beam output and operation. A solenoid-type gas valve feeds H2H_{2} gas into the source precisely and independently of ambient temperature. This summary will cover several studies and design changes that have been tested and will eventually be implemented on the operational magnetron sources at Fermilab. Innovative results for this type of ion source include cathode geometries, solenoid gas valves, current controlled arc pulser, cesium boiler redesign, gas mixtures of hydrogen and nitrogen, and duty factor reduction, with the aim to improve source lifetime, stability, and reducing the amount of tuning needed. In this summary, I will highlight the advances made in ion sources at Fermilab and will outline the directions of the continuing R&D effort.Comment: 4 pp. arXiv admin note: substantial text overlap with arXiv:1701.0175

    Improvements on the Stability and Operation of a Magnetron H- Ion Source

    Full text link
    The magnetron H- ion sources developed in the 1970s currently in operation at Fermilab provide beam to the rest of the accelerator complex. A series of modifications to these sources have been tested in a dedicated offline test stand with the aim of improving different operational issues. The solenoid type gas valve was tested as an alternative to the piezoelectric gas valve in order to avoid its temperature dependence. A new cesium oven was designed and tested in order to avoid glass pieces that were present with the previous oven, improve thermal insulation and fine tune its temperature. A current-regulated arc modulator was developed to run the ion source at a constant arc current, providing very stable beam outputs during operations. In order to reduce beam noise, the addition of small amounts of N2 gas was explored, as well as testing different cathode shapes with increasing plasma volume. This paper summarizes the studies and modifications done in the source over the last three years with the aim of improving its stability, reliability and overall performance.Comment: 8 pages, 19 figure

    Deviation contribution plots of multivariate statistics

    Get PDF
    As data analytic techniques evolve and the accessibility of process measurements improves, data-driven process monitoring has enjoyed a quick development in both theoretical and application perspectives recently. Although abundant process measurements will facilitate data-driven process monitoring and lead to better monitoring indices, it becomes difficult to identify the underlying variables that are responsible for a fault directly with the monitoring indices as the scope of measured variables is getting broader. To restrain the scope and identify the source of fault, contribution plots are commonly used in fault diagnosis in order to quantify the influence of process variables in presence of fault. Nevertheless, as sophisticated monitoring techniques become more and more complicated, deriving corresponding contribution plots is challenging. The concept of deviation contribution plots is proposed to address this issue. By extending the original definition of contribution for linear processes, the deviation contribution is defined to quantify the contribution of deviations in originally measured variables to the deviation of monitoring indices. The ability of proposed deviation contribution plots to identify influential variables in monitoring algorithms based on nonlinear feature extractions is verified by both numerical simulation and the Tennessee Eastman Process benchmark case study
    corecore