253 research outputs found

    Holographic Technidilaton and LHC searches

    Full text link
    We analyze in detail the phenomenology of a model of dynamical electroweak symmetry breaking inspired by walking technicolor, by using the techniques of the bottom-up approach to holography. The model admits a light composite scalar state, the dilaton, in the spectrum. We focus on regions of parameter space for which the mass of such dilaton is 125 GeV, and for which the bounds on the precision electroweak parameter S are satisfied. This requires that the next-to-lightest composite state is the techni-rho meson, with a mass larger than 2.3 TeV. We compute the couplings controlling the decay rates of the dilaton to two photons and to two (real or virtual) Z and W bosons. For generic choices of the parameters, we find a suppression of the decay into heavy gauge bosons, in respect to the analog decay of the standard-model Higgs. We find a dramatic effect on the decay into photons, which can be both strongly suppressed or strongly enhanced, the latter case corresponding to the large-N regime of the dual theory. There is a correlation between this decay rate of the dilaton into photons and the mass splitting between the techni-rho meson and its axial-vector partner: if the decay is enhanced in respect to the standard-model case, then the heavy spin-1 resonances are nearly degenerate in mass, otherwise their separation in mass is comparable to the mass scale itself.Comment: Very minor typos corrected. References adde

    Pade approximation of the S-matrix as a way of locating quantum resonances and bound states

    Full text link
    It is shown that the spectral points (bound states and resonances) generated by a central potential of a single-channel problem, can be found using rational parametrization of the S-matrix. To achieve this, one only needs values of the S-matrix along the real positive energy axis. No calculations of the S-matrix at complex energies or a complex rotation are necessary. The proposed method is therefore universal in that it is applicable to any potential (local, non-local, discontinuous, etc.) provided that there is a way of obtaining the S-matrix (or scattering phase-shifts) at real collision energies. Besides this, combined with any method that extracts the phase-shifts from the scattering data, the proposed rational parametrization technique would be able to do the spectral analysis using the experimental data.Comment: 20 pages, 6 figure

    Solving the Coulomb scattering problem using the complex scaling method

    Full text link
    Based on the work of Nuttall and Cohen [Phys. Rev. {\bf 188} (1969) 1542] and Resigno et al{} [Phys. Rev. A {\bf 55} (1997) 4253] we present a rigorous formalism for solving the scattering problem for long-range interactions without using exact asymptotic boundary conditions. The long-range interaction may contain both Coulomb and short-range potentials. The exterior complex scaling method, applied to a specially constructed inhomogeneous Schr\"odinger equation, transforms the scattering problem into a boundary problem with zero boundary conditions. The local and integral representations for the scattering amplitudes have been derived. The formalism is illustrated with numerical examples.Comment: 3 pages, 3 figure

    The decline and rise of neighbourhoods: the importance of neighbourhood governance

    Get PDF
    There is a substantial literature on the explanation of neighbourhood change. Most of this literature concentrates on identifying factors and developments behind processes of decline. This paper reviews the literature, focusing on the identification of patterns of neighbourhood change, and argues that the concept of neighbourhood governance is a missing link in attempts to explain these patterns. Including neighbourhood governance in the explanations of neighbourhood change and decline will produce better explanatory models and, finally, a better view about what is actually steering neighbourhood change

    Logarithmic perturbation theory for quasinormal modes

    Get PDF
    Logarithmic perturbation theory (LPT) is developed and applied to quasinormal modes (QNMs) in open systems. QNMs often do not form a complete set, so LPT is especially convenient because summation over a complete set of unperturbed states is not required. Attention is paid to potentials with exponential tails, and the example of a Poschl-Teller potential is briefly discussed. A numerical method is developed that handles the exponentially large wavefunctions which appear in dealing with QNMs.Comment: 24 pages, 4 Postscript figures, uses ioplppt.sty and epsfig.st

    Towards multi-scale dynamics on the baryonic branch of Klebanov-Strassler

    Full text link
    We construct explicitly a new class of backgrounds in type-IIB supergravity which generalize the baryonic branch of Klebanov-Strassler. We apply a solution-generating technique that, starting from a large class of solutions of the wrapped-D5 system, yields the new solutions, and then proceed to study in detail their properties, both in the IR and in the UV. We propose a simple intuitive field theory interpretation of the rotation procedure and of the meaning of our new solutions within the Papadopoulos-Tseytlin ansatz, in particular in relation to the duality cascade in the Klebanov-Strassler solution. The presence in the field theory of different VEVs for operators of dimensions 2, 3 and 6 suggests that this is an important step towards the construction of the string dual of a genuinely multi-scale (strongly coupled) dynamical model.Comment: 37 pages, 7 figures. References added, version to appear in JHE

    The Holographic Dual of 2+1 Dimensional QFTs with N=1 SUSY and Massive Fundamental Flavours

    Full text link
    The Maldacena Nastase solution is generalised to include massive fundamental matter through the addition of a flavour profile. This gives a holographic dual to N=1 SYM-CS with massive fundamental matter with a singularity free IR. We study this solution in some detail confirming confinement and asymptotic freedom. A recently proposed solution generating technique is then applied which results in a new type-IIA supergravity solution. In a certain limit the geometry of this solution is asymptotically AdS_4X Y, where Y is the metric at the base of the Bryant-Salamon G_2 cone, which has topology S^3XS^3.Comment: 31 pages plus appendices, 6 figures. v3: Typos corrected, version to appear in JHE

    Thermodynamics of Large N Gauge Theories with Chemical Potentials in a 1/D Expansion

    Full text link
    In order to understand thermodynamical properties of N D-branes with chemical potentials associated with R-symmetry charges, we study a one dimensional large N gauge theory (bosonic BFSS type model) as a first step. This model is obtained through a dimensional reduction of a 1+D dimensional SU(N) Yang-Mills theory and we use a 1/D expansion to investigate the phase structure. We find three phases in the \mu-T plane. We also show that all the adjoint scalars condense at large D and obtain a mass dynamically. This dynamical mass protects our model from the usual perturbative instability of massless scalars in a non-zero chemical potential. We find that the system is at least meta-stable for arbitrary large values of the chemical potentials in D \to \infty limit. We also explore the existence of similar condensation in higher dimensional gauge theories in a high temperature limit. In 2 and 3 dimensions, the condensation always happens as in one dimensional case. On the other hand, if the dimension is higher than 4, there is a critical chemical potential and the condensation happens only if the chemical potentials are below it.Comment: 37 pages, 4 figures; v2: minor corrections, references added; v3: minor corrections, to appear in JHE

    The Non-SUSY Baryonic Branch: Soft Supersymmetry Breaking of N=1 Gauge Theories

    Full text link
    We study a non-supersymmetric deformation of the field theory dual to the baryonic branch of Klebanov-Strassler. Using a combination of analytical (series expansions) and numerical methods we construct non-supersymmetric backgrounds that smoothly interpolate between the desired UV and IR behaviors. We calculate various observables of the field theory and propose a picture of soft breaking by gaugino masses that is consistent with the various calculations on the string side.Comment: 32 pages plus many appendixes. One figur

    D3-D7 Quark-Gluon Plasmas at Finite Baryon Density

    Get PDF
    We present the string dual to SU(Nc) N=4 SYM, coupled to Nf massless fundamental flavors, at finite temperature and baryon density. The solution is determined by two dimensionless parameters, both depending on the 't Hooft coupling λh\lambda_h at the scale set by the temperature T: Ï”h∌λhNf/Nc\epsilon_h\sim\lambda_h Nf/Nc, weighting the backreaction of the flavor fields and ÎŽ~∌λh−1/2nb/(NfT3)\tilde\delta\sim\lambda_h^{-1/2}nb/(Nf T^3), where nbnb is the baryon density. For small values of these two parameters the solution is given analytically up to second order. We study the thermodynamics of the system in the canonical and grand-canonical ensembles. We then analyze the energy loss of partons moving through the plasma, computing the jet quenching parameter and studying its dependence on the baryon density. Finally, we analyze certain "optical" properties of the plasma. The whole setup is generalized to non abelian strongly coupled plasmas engineered on D3-D7 systems with D3-branes placed at the tip of a generic singular Calabi-Yau cone. In all the cases, fundamental matter fields are introduced by means of homogeneously smeared D7-branes and the flavor symmetry group is thus a product of abelian factors.Comment: 27 pages; v2: 29 pages, 1 (new) figure, new section 4.4 on optical properties, references, comments added; v3: eq. (3.19), comments and a reference adde
    • 

    corecore