84,632 research outputs found

    Quantum Entanglement as a Diagnostic of Phase Transitions in Disordered Fractional Quantum Hall Liquids

    Get PDF
    We investigate the disorder-driven phase transition from a fractional quantum Hall state to an Anderson insulator using quantum entanglement methods. We find that the transition is signaled by a sharp increase in the sensitivity of a suitably averaged entanglement entropy with respect to disorder -- the magnitude of its disorder derivative appears to diverge in the thermodynamic limit. We also study the level statistics of the entanglement spectrum as a function of disorder. However, unlike the dramatic phase-transition signal in the entanglement entropy derivative, we find a gradual reduction of level repulsion only deep in the Anderson insulating phase.Comment: 8 pages, 8 figures, including the supplemental material, published in PRL as an Editors' Suggestio

    Angular momentum I ground state probabilities of boson systems interacting by random interactions

    Full text link
    In this paper we report our systematic calculations of angular momentum II ground state probabilities (P(I)P(I)) of boson systems with spin ll in the presence of random two-body interactions. It is found that the P(0) dominance is usually not true for a system with an odd number of bosons, while it is valid for an even number of bosons, which indicates that the P(0) dominance is partly connected to the even number of identical particles. It is also noticed that the P(Imax)P(I_{max})'s of bosons with spin ll do not follow the 1/N (N=l+1N=l+1, referring to the number of independent two-body matrix elements) relation. The properties of the P(I)P(I)'s obtained in boson systems with spin ll are discussed.Comment: 8 pages and 3 figure

    Quark model predictions for KK^* photoproduction on the proton

    Full text link
    The photoproduction of KK^* vector mesons is investigated in a quark model with an effective Lagrangian. Including both baryon resonance excitations and {\it t}-channel exchanges, observables for the reactions γpK0Σ+\gamma p\to K^{*0}\Sigma^+ and γpK+Σ0\gamma p\to K^{*+}\Sigma^0 are predicted, using the SU(3)-flavor-blind assumption of non-perturbative QCD.Comment: Revtex, 3 eps figures, revised version accepted by PRC Rapid Comm

    Many-body Systems Interacting via a Two-body Random Ensemble (I): Angular Momentum distribution in the ground states

    Full text link
    In this paper, we discuss the angular momentum distribution in the ground states of many-body systems interacting via a two-body random ensemble. Beginning with a few simple examples, a simple approach to predict P(I)'s, angular momenta I ground state (g.s.) probabilities, of a few solvable cases, such as fermions in a small single-j shell and d boson systems, is given. This method is generalized to predict P(I)'s of more complicated cases, such as even or odd number of fermions in a large single-j shell or a many-j shell, d-boson, sd-boson or sdg-boson systems, etc. By this method we are able to tell which interactions are essential to produce a sizable P(I) in a many-body system. The g.s. probability of maximum angular momentum ImaxI_{max} is discussed. An argument on the microscopic foundation of our approach, and certain matrix elements which are useful to understand the observed regularities, are also given or addressed in detail. The low seniority chain of 0 g.s. by using the same set of two-body interactions is confirmed but it is noted that contribution to the total 0 g.s. probability beyond this chain may be more important for even fermions in a single-j shell. Preliminary results by taking a displaced two-body random ensemble are presented for the I g.s. probabilities.Comment: 39 pages and 8 figure

    Large magnetothermal conductivity in GdBaCo_{2}O_{5+x} single crystals

    Full text link
    To study the effects of paramagnetic spins on phonons, both the in-plane and the c-axis heat transport of GdBaCo_{2}O_{5+x} (GBCO) single crystals are measured at low temperature down to 0.36 K and in magnetic field up to 16 T. It is found that the phonon heat transport is very strongly affected by the magnetic field and nearly 5 times increase of the thermal conductivity in several Tesla field is observed at 0.36 K. It appears that phonons are resonantly scattered by paramagnetic spins in zero field and the application of magnetic field removes such strong scattering, but the detailed mechanism is to be elucidated.Comment: 5 pages, 5 figures, accepted for publication in Phys. Rev.

    Position-dependent shear-induced austenite-martensite transformation in double-notched TRIP and dual-phase steel samples

    Get PDF
    While earlier studies on transformation-induced-plasticity (TRIP) steels focused on the determination of the austenite-to-martensite decomposition in uniform deformation or thermal fields, the current research focuses on the determination of the local retained austenite-to-martensite transformation behaviour in an inhomogeneous yet carefully controlled shear-loaded region of double-notched TRIP and dual-phase (DP) steel samples. A detailed powder analysis has been performed to simultaneously monitor the evolution of the phase fraction and the changes in average carbon concentration of metastable austenite together with the local strain components in the constituent phases as a function of the macroscopic stress and location with respect to the shear band. The metastable retained austenite shows a mechanically induced martensitic transformation in the localized shear zone, which is accompanied by an increase in average carbon concentration of the remaining austenite due to a preferred transformation of the austenite grains with the lowest carbon concentration. At the later deformation stages the geometry of the shear test samples results in the development of an additional tensile component. The experimental strain field within the probed sample area is in good agreement with finite element calculations. The strain development observed in the low-alloyed TRIP steel with metastable austenite is compared with that of steels with the same chemical composition containing either no austenite (a DP grade) or stable retained austenite (a TRIP grade produced at a long bainitic holding time). The transformation of metastable austenite under shear is a complex interplay between the local microstructure and the evolving strain fields
    corecore