2,906 research outputs found

    Foam composite structures

    Get PDF
    The need to include fire resistant foams into state of the art aircraft interior paneling to increase passenger safety in aircraft fires was studied. Present efforts were directed toward mechanical and fire testing of panels with foam inclusions. Skinned foam filled honeycomb and PBI structural foams were the two constructions investigated with attention being directed toward weight/performance/cost trade-off. All of the new panels demonstrated improved performance in fire and some were lighter weight but not as strong as the presently used paneling. Continued efforts should result in improved paneling for passenger safety. In particular the simple partial filling (fire side) of state-of-the-art honeycomb with fire resistant foams with little sacrifice in weight would result in panels with increased fire resistance. More important may be the retarded rate of toxic gas evolution in the fire due to the protection of the honeycomb by the foam

    Low-density polybenzimidazole foams for thermal insulation and fire protection

    Get PDF
    Fire-resistant and nonsmoking foam can be prepared in desirable density range of 24 to 50 kg/cu m by controlled thermal crosslinking of polybenzimidazole prepolymer. Reproducible foams of specific density can be produced by controlling volative content and melting temperature of prepolymer

    Solar Flare X-ray Source Motion as a Response to Electron Spectral Hardening

    Get PDF
    Context: Solar flare hard X-rays (HXRs) are thought to be produced by nonthermal coronal electrons stopping in the chromosphere, or remaining trapped in the corona. The collisional thick target model (CTTM) predicts that sources produced by harder power-law injection spectra should appear further down the legs or footpoints of a flare loop. Therefore, hardening of the injected power-law electron spectrum during flare onset should be concurrent with a descending hard X-ray source. Aims: To test this implication of the CTTM by comparing its predicted HXR source locations with those derived from observations of a solar flare which exhibits a nonthermally-dominated spectrum before the peak in HXRs, known as an early impulsive event. Methods: HXR images and spectra of an early impulsive C-class flare were obtained using the Ramaty High-Energy Solar Spectroscopic Imager (RHESSI). Images were reconstructed to produce HXR source height evolutions for three energy bands. Spatially-integrated spectral analysis was performed to isolate nonthermal emission, and to determine the power-law index of the electron injection spectrum. The observed height-time evolutions were then fit with CTTM-based simulated heights for each energy. Results: A good match between model and observed source heights was reached, requiring a density model that agreed well with previous studies of flare loop densities. Conclusions: The CTTM has been used to produce a descent of model HXR source heights that compares well with observations of this event. Based on this interpretation, downward motion of nonthermal sources should indeed occur in any flare where there is spectral hardening in the electron distribution during a flare. However, this would often be masked by thermal emission associated with flare plasma pre-heating.Comment: 8 pages, 5 figure

    Disentangling habitat concepts for demersal marine fish management

    Get PDF
    Fishing and other anthropogenic impacts have led to declines in many fish stocks and modification of the seabed. As a result, efforts to restore marine ecosystems have become increasingly focused on spatially explicit management methods to protect fish and the habitats they require for survival. This has led to a proliferation of investigations trying to map ‘habitats’ vulnerable to anthropogenic impacts and identify fish resource requirements in order to meet conservation and management needs. A wide range of habitat-related concepts, with different uses and understandings of the word ‘habitat’ itself has arisen as a consequence. Inconsistencies in terminology can cause confusion between studies, making it difficult to investigate and understand the ecology of fish and the factors that affect their survival. Ultimately, the inability to discern the relationships between fish and their environment clearly can hinder conservation and management measures for fish populations. This review identifies and addresses the present ambiguity surrounding definitions of ‘habitat’ and habitat-related concepts currently used in spatial management of demersal marine fish populations. The role of spatial and temporal scales is considered, in addition to examples of how to assess fish habitat for conservation and management purposes
    • …
    corecore