13,474 research outputs found

    Heat transfer in rotating serpentine passages with trips normal to the flow

    Get PDF
    Experiments were conducted to determine the effects of buoyancy and Coriolis forces on heat transfer in turbine blade internal coolant passages. The experiments were conducted with a large scale, multipass, heat transfer model with both radially inward and outward flow. Trip strips on the leading and trailing surfaces of the radial coolant passages were used to produce the rough walls. An analysis of the governing flow equations showed that four parameters influence the heat transfer in rotating passages: coolant-to-wall temperature ratio, Rossby number, Reynolds number, and radius-to-passage hydraulic diameter ratio. The first three of these four parameters were varied over ranges which are typical of advanced gas turbine engine operating conditions. Results were correlated and compared to previous results from stationary and rotating similar models with trip strips. The heat transfer coefficients on surfaces, where the heat increased with rotation and buoyancy, varied by as much as a factor of four. Maximum values of the heat transfer coefficients with high rotation were only slightly above the highest levels obtained with the smooth wall model. The heat transfer coefficients on surfaces, where the heat transfer decreased with rotation, varied by as much as a factor of three due to rotation and buoyancy. It was concluded that both Coriolis and buoyancy effects must be considered in turbine blade cooling designs with trip strips and that the effects of rotation were markedly different depending upon the flow direction

    Magnetic phenomena at and near nu =1/2 and 1/4: theory, experiment and interpretation

    Full text link
    I show that the hamiltonian theory of Composite Fermions (CF) is capable of yielding a unified description in fair agreement with recent experiments on polarization P and relaxation rate 1/T_1 in quantum Hall states at filling nu = p/(2ps+1), at and near nu = 1/2 and 1/4, at zero and nonzero temperatures. I show how rotational invariance and two dimensionality can make the underlying interacting theory behave like a free one in a limited context.Comment: Latex 4 pages, 2 figure

    Scattering of slow-light gap solitons with charges in a two-level medium

    Full text link
    The Maxwell-Bloch system describes a quantum two-level medium interacting with a classical electromagnetic field by mediation of the the population density. This population density variation is a purely quantum effect which is actually at the very origin of nonlinearity. The resulting nonlinear coupling possesses particularly interesting consequences at the resonance (when the frequency of the excitation is close to the transition frequency of the two-level medium) as e.g. slow-light gap solitons that result from the nonlinear instability of the evanescent wave at the boundary. As nonlinearity couples the different polarizations of the electromagnetic field, the slow-light gap soliton is shown to experience effective scattering whith charges in the medium, allowing it for instance to be trapped or reflected. This scattering process is understood qualitatively as being governed by a nonlinear Schroedinger model in an external potential related to the charges (the electrostatic permanent background component of the field).Comment: RevTex, 14 pages with 5 figures, to appear in J. Phys. A: Math. Theo

    Effects of Zeeman spin splitting on the modular symmetry in the quantum Hall effect

    Full text link
    Magnetic-field-induced phase transitions in the integer quantum Hall effect are studied under the formation of paired Landau bands arising from Zeeman spin splitting. By investigating features of modular symmetry, we showed that modifications to the particle-hole transformation should be considered under the coupling between the paired Landau bands. Our study indicates that such a transformation should be modified either when the Zeeman gap is much smaller than the cyclotron gap, or when these two gaps are comparable.Comment: 8 pages, 4 figure

    Scanning Tunnelling Spectroscopic Studies of Dirac Fermions in Graphene and Topological Insulators

    Get PDF
    We report novel properties derived from scanning tunnelling spectroscopic (STS) studies of Dirac fermions in graphene and the surface state (SS) of a strong topological insulator (STI), Bi_2Se_3. For mono-layer graphene grown on Cu by chemical vapour deposition (CVD), strain-induced scalar and gauge potentials are manifested by the charging effects and the tunnelling conductance peaks at quantized energies, respectively. Additionally, spontaneous time-reversal symmetry breaking is evidenced by the alternating anti-localization and localization spectra associated with the zero-mode of two sublattices while global time-reversal symmetry is preserved under the presence of pseudo-magnetic fields. For Bi_2Se_3 epitaxial films grown on Si(111) by molecular beam epitaxy (MBE), spatially localized unitary impurity resonances with sensitive dependence on the energy difference between the Fermi level and the Dirac point are observed for samples thicker than 6 quintuple layers (QL). These findings are characteristic of the SS of a STI and are direct manifestation of strong topological protection against impurities. For samples thinner than 6-QL, STS studies reveal the openup of an energy gap in the SS due to overlaps of wave functions between the surface and interface layers. Additionally, spin-preserving quasiparticle interference wave-vectors are observed, which are consistent with the Rashba-like spin-orbit splitting

    An experimental study on Γ\Gamma(2) modular symmetry in the quantum Hall system with a small spin-splitting

    Full text link
    Magnetic-field-induced phase transitions were studied with a two-dimensional electron AlGaAs/GaAs system. The temperature-driven flow diagram shows the features of the Γ\Gamma(2) modular symmetry, which includes distorted flowlines and shiftted critical point. The deviation of the critical conductivities is attributed to a small but resolved spin splitting, which reduces the symmetry in Landau quantization. [B. P. Dolan, Phys. Rev. B 62, 10278.] Universal scaling is found under the reduction of the modular symmetry. It is also shown that the Hall conductivity could still be governed by the scaling law when the semicircle law and the scaling on the longitudinal conductivity are invalid. *corresponding author:[email protected]: The revised manuscript has been published in J. Phys.: Condens. Matte

    Expression of Interest: The Atmospheric Neutrino Neutron Interaction Experiment (ANNIE)

    Full text link
    Neutron tagging in Gadolinium-doped water may play a significant role in reducing backgrounds from atmospheric neutrinos in next generation proton-decay searches using megaton-scale Water Cherenkov detectors. Similar techniques might also be useful in the detection of supernova neutrinos. Accurate determination of neutron tagging efficiencies will require a detailed understanding of the number of neutrons produced by neutrino interactions in water as a function of momentum transferred. We propose the Atmospheric Neutrino Neutron Interaction Experiment (ANNIE), designed to measure the neutron yield of atmospheric neutrino interactions in gadolinium-doped water. An innovative aspect of the ANNIE design is the use of precision timing to localize interaction vertices in the small fiducial volume of the detector. We propose to achieve this by using early production of LAPPDs (Large Area Picosecond Photodetectors). This experiment will be a first application of these devices demonstrating their feasibility for Water Cherenkov neutrino detectors.Comment: Submitted for the January 2014 Fermilab Physics Advisory Committee meetin
    • …
    corecore