9,654 research outputs found

    The pyroelectric properties of TGS for application in infrared detection

    Get PDF
    The pyroelectric property of triglycine sulfate and its application in the detection of infrared radiation are described. The detectivities of pyroelectric detectors and other types of infrared detectors are compared. The thermal response of a pyroelectric detector element and the resulting electrical response are derived in terms of the material parameters. The noise sources which limit the sensitivity of pyroelectric detectors are described, and the noise equivalent power for each noise source is given as a function of frequency and detector area

    Scanning the critical fluctuations -- application to the phenomenology of the two-dimensional XY-model --

    Full text link
    We show how applying field conjugated to the order parameter, may act as a very precise probe to explore the probability distribution function of the order parameter. Using this `magnetic-field scanning' on large-scale numerical simulations of the critical 2D XY-model, we are able to discard the conjectured double-exponential form of the large-magnetization asymptote.Comment: 4 pages, 4 figure

    Relativistic photoelectron spectra in the ionization of atoms by elliptically polarized light

    Get PDF
    Relativistic tunnel ionization of atoms by intense, elliptically polarized light is considered. The relativistic version of the Landau-Dykhne formula is employed. The general analytical expression is obtained for the relativistic photoelectron spectra. The most probable angle of electron emission, the angular distribution near this angle, the position of the maximum and the width of the energy spectrum are calculated. In the weak field limit we obtain the familiar non-relativistic results. For the case of circular polarization our analytical results are in agreement with recent derivations of Krainov [V.P. Krainov, J. Phys. B, {\bf 32}, 1607 (1999)].Comment: 8 pages, 2 figures, accepted for publication in Journal of Physics

    Fermionic functional renormalization group for first-order phase transitions: a mean-field model

    Full text link
    First-order phase transitions in many-fermion systems are not detected in the susceptibility analysis of common renormalization-group (RG) approaches. Here we introduce a counterterm technique within the functional renormalization-group (fRG) formalism which allows access to all stable and metastable configurations. It becomes possible to study symmetry-broken states which occur through first-order transitions as well as hysteresis phenomena. For continuous transitions, the standard results are reproduced. As an example, we study discrete-symmetry breaking in a mean-field model for a commensurate charge-density wave. An additional benefit of the approach is that away from the critical temperature for the breaking of discrete symmetries large interactions can be avoided at all RG scales.Comment: 17 pages, 8 figures. v2 corrects typos, adds references and a discussion of the literatur

    Relativistic semiclassical approach in strong-field nonlinear photoionization

    Get PDF
    Nonlinear relativistic ionization phenomena induced by a strong laser radiation with elliptically polarization are considered. The starting point is the classical relativistic action for a free electron moving in the electromagnetic field created by a strong laser beam. The application of the relativistic action to the classical barrier-suppression ionization is briefly discussed. Further the relativistic version of the Landau-Dykhne formula is employed to consider the semiclassical sub-barrier ionization. Simple analytical expressions have been found for: (i) the rates of the strong-field nonlinear ionization including relativistic initial and final state effects; (ii) the most probable value of the components of the photoelectron final state momentum; (iii) the most probable direction of photoelectron emission and (iv) the distribution of the photoelectron momentum near its maximum value.Comment: 13 pages, 3 figures, to be published in Phys. Rev.

    Dust Devil Tracks

    Get PDF
    Dust devils that leave dark- or light-toned tracks are common on Mars and they can also be found on the Earth’s surface. Dust devil tracks (hereinafter DDTs) are ephemeral surface features with mostly sub-annual lifetimes. Regarding their size, DDT widths can range between ∼1 m and ∼1 km, depending on the diameter of dust devil that created the track, and DDT lengths range from a few tens of meters to several kilometers, limited by the duration and horizontal ground speed of dust devils. DDTs can be classified into three main types based on their morphology and albedo in contrast to their surroundings; all are found on both planets: (a) dark continuous DDTs, (b) dark cycloidal DDTs, and (c) bright DDTs. Dark continuous DDTs are the most common type on Mars. They are characterized by their relatively homogenous and continuous low albedo surface tracks. Based on terrestrial and martian in situ studies, these DDTs most likely form when surficial dust layers are removed to expose larger-grained substrate material (coarse sands of ≥500 μm in diameter). The exposure of larger-grained materials changes the photometric properties of the surface; hence leading to lower albedo tracks because grain size is photometrically inversely proportional to the surface reflectance. However, although not observed so far, compositional differences (i.e., color differences) might also lead to albedo contrasts when dust is removed to expose substrate materials with mineralogical differences. For dark continuous DDTs, albedo drop measurements are around 2.5 % in the wavelength range of 550–850 nm on Mars and around 0.5 % in the wavelength range from 300–1100 nm on Earth. The removal of an equivalent layer thickness around 1 μm is sufficient for the formation of visible dark continuous DDTs on Mars and Earth. The next type of DDTs, dark cycloidal DDTs, are characterized by their low albedo pattern of overlapping scallops. Terrestrial in situ studies imply that they are formed when sand-sized material that is eroded from the outer vortex area of a dust devil is redeposited in annular patterns in the central vortex region. This type of DDT can also be found in on Mars in orbital image data, and although in situ studies are lacking, terrestrial analog studies, laboratory work, and numerical modeling suggest they have the same formation mechanism as those on Earth. Finally, bright DDTs are characterized by their continuous track pattern and high albedo compared to their undisturbed surroundings. They are found on both planets, but to date they have only been analyzed in situ on Earth. Here, the destruction of aggregates of dust, silt and sand by dust devils leads to smooth surfaces in contrast to the undisturbed rough surfaces surrounding the track. The resulting change in photometric properties occurs because the smoother surfaces have a higher reflectance compared to the surrounding rough surface, leading to bright DDTs. On Mars, the destruction of surficial dust-aggregates may also lead to bright DDTs. However, higher reflective surfaces may be produced by other formation mechanisms, such as dust compaction by passing dust devils, as this may also cause changes in photometric properties. On Mars, DDTs in general are found at all elevations and on a global scale, except on the permanent polar caps. DDT maximum areal densities occur during spring and summer in both hemispheres produced by an increase in dust devil activity caused by maximum insolation. Regionally, dust devil densities vary spatially likely controlled by changes in dust cover thicknesses and substrate materials. This variability makes it difficult to infer dust devil activity from DDT frequencies. Furthermore, only a fraction of dust devils leave tracks. However, DDTs can be used as proxies for dust devil lifetimes and wind directions and speeds, and they can also be used to predict lander or rover solar panel clearing events. Overall, the high DDT frequency in many areas on Mars leads to drastic albedo changes that affect large-scale weather patterns

    Validity and worth in the science curriculum: learning school science outside the laboratory

    Get PDF
    It is widely acknowledged that there are problems with school science in many developed countries of the world. Such problems manifest themselves in a progressive decline in pupil enthusiasm for school science across the secondary age range and the fact that fewer students are choosing to study the physical sciences at higher levels and as careers. Responses to these developments have included proposals to reform the curriculum, pedagogy and the nature of pupil discussion in science lessons. We support such changes but argue from a consideration of the aims of science education that secondary school science is too rooted in the science laboratory; substantially greater use needs to be made of out-of-school sites for the teaching of science. Such usage should result in a school science education that is more valid and more motivating and is better at fulfilling defensible aims of school science education. Our contention is that laboratory-based school science teaching needs to be complemented by out-of-school science learning that draws on the actual world (e.g. through fieldtrips), the presented world (e.g. in science centres, botanic gardens, zoos and science museums) and the virtual worlds that are increasingly available through information and communications technologies (ICT)

    Geodesics for Efficient Creation and Propagation of Order along Ising Spin Chains

    Full text link
    Experiments in coherent nuclear and electron magnetic resonance, and optical spectroscopy correspond to control of quantum mechanical ensembles, guiding them from initial to final target states by unitary transformations. The control inputs (pulse sequences) that accomplish these unitary transformations should take as little time as possible so as to minimize the effects of relaxation and decoherence and to optimize the sensitivity of the experiments. Here we give efficient syntheses of various unitary transformations on Ising spin chains of arbitrary length. The efficient realization of the unitary transformations presented here is obtained by computing geodesics on a sphere under a special metric. We show that contrary to the conventional belief, it is possible to propagate a spin order along an Ising spin chain with coupling strength J (in units of Hz), significantly faster than 1/(2J) per step. The methods presented here are expected to be useful for immediate and future applications involving control of spin dynamics in coherent spectroscopy and quantum information processing

    Relativistic electronic dressing in laser-assisted ionization of atomic hydrogen by electron impact

    Full text link
    Within the framework of the coplanar binary geometry where it is justified to use plane wave solutions for the study of the (e,2e)(e,2e) reaction and in the presence of a circularly polarized laser field, we introduce as a first step the DVRPWBA1 (Dirac-Volkov Plane Wave Born Approximation1) where we take into account only the relativistic dressing of the incident and scattered electrons. Then, we introduce the DVRPWBA2 (Dirac-Volkov Plane Wave Born Approximation2) where we take totally into account the relativistic dressing of the incident, scattered and ejected electrons. We then compare the corresponding triple differential cross sections for laser-assisted ionization of atomic hydrogen by electron impact both for the non relativistic and the relativistic regime.Comment: 18 pages, Latex, 7 figure

    Breakdown and recovery in traffic flow models

    Full text link
    Most car-following models show a transition from laminar to ``congested'' flow and vice versa. Deterministic models often have a density range where a disturbance needs a sufficiently large critical amplitude to move the flow from the laminar into the congested phase. In stochastic models, it may be assumed that the size of this amplitude gets translated into a waiting time, i.e.\ until fluctuations sufficiently add up to trigger the transition. A recently introduced model of traffic flow however does not show this behavior: in the density regime where the jam solution co-exists with the high-flow state, the intrinsic stochasticity of the model is not sufficient to cause a transition into the jammed regime, at least not within relevant time scales. In addition, models can be differentiated by the stability of the outflow interface. We demonstrate that this additional criterion is not related to the stability of the flow. The combination of these criteria makes it possible to characterize commonalities and differences between many existing models for traffic in a new way
    corecore