183,208 research outputs found

    The power of VNA-driven quasi-optics to sense group molecular action in condensed phase systems

    Get PDF
    © © 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The authors would like to thank the Engineering and Physical Sciences Research Council (EPSRC, UK) for generous support (EP/1014845)

    Perturbative calculation of the scaled factorial moments in second-order quark-hadron phase transition within the Ginzburg-Landau description

    Get PDF
    The scaled factorial moments FqF_q are studied for a second-order quark-hadron phase transition within the Ginzburg-Landau description. The role played by the ground state of the system under low temperature is emphasized. After a local shift of the order parameter the fluctuations are around the ground state, and a perturbative calculation for FqF_q can be carried out. Power scaling between FqF_q's is shown, and a universal scaling exponent ν1.75\nu\simeq 1.75 is given for the case with weak correlations and weak self-interactions.Comment: 12 pages in RevTeX, 12 eps figure

    Current experimental constraints on NMSSM with large lambda

    Full text link
    The next-to-minimal supersymmetric model (NMSSM) with a large lambda (the mixing parameter between the singlet and doublet Higgs fields) is well motivated since it can significantly push up the upper bound on the SM-like Higgs boson mass to solve the little hierarchy problem. In this work we examine the current experimental constraints on the NMSSM with a large lambda, which include the direct search for Higgs boson and sparticles at colliders, the indirect constraints from precision electroweak measurements, the cosmic dark matter relic density, the muon anomalous magnetic moment, as well as the stability of the Higgs potential. We find that, with the increase of lambda, parameters like tan-beta, M_A, mu and M_2 are becoming more stringently constrained. It turns out that the maximal reach of lambda is limited by the muon anomalous magnetic moment, and for smuon masses of 200 GeV (500 GeV) the parameter space with lambda > 1.5 (0.6) is excluded.Comment: Version in PRD (figs and discussions added

    Influence of surface roughness on superhydrophobicity

    Get PDF
    Superhydrophobic surfaces, with liquid contact angle theta greater than 150 degree, have important practical applications ranging from self-cleaning window glasses, paints, and fabrics to low-friction surfaces. Many biological surfaces, such as the lotus leaf, have hierarchically structured surface roughness which is optimized for superhydrophobicity through natural selection. Here we present a molecular dynamics study of liquid droplets in contact with self-affine fractal surfaces. Our results indicate that the contact angle for nanodroplets depends strongly on the root-mean-square surface roughness amplitude but is nearly independent of the fractal dimension D_f of the surface.Comment: 5 Pages, 6 figures. Minimal changes with respect to the previous versio

    Fragmentation or Recombination at High p_T?

    Full text link
    All hadronization processes, including fragmentation, are shown to proceed through recombination. The shower partons in a jet turn out to play an important role in describing the p_T spectra of hadrons produced in heavy-ion collisions. Due to the recombination of the shower partons with the soft thermal partons, the structure of jets produced in AA collisions is not the same as that of jets produced in pp collisions.Comment: Talk given at Quark Matter 200

    Novel Scaling Behavior for the Multiplicity Distribution under Second-Order Quark-Hadron Phase Transition

    Full text link
    Deviation of the multiplicity distribution PqP_q in small bin from its Poisson counterpart pqp_q is studied within the Ginzburg-Landau description for second-order quark-hadron phase transition. Dynamical factor dqPq/pqd_q\equiv P_q/p_q for the distribution and ratio Dqdq/d1D_q\equiv d_q/d_1 are defined, and novel scaling behaviors between DqD_q are found which can be used to detect the formation of quark-gluon plasma. The study of dqd_q and DqD_q is also very interesting for other multiparticle production processes without phase transition.Comment: 4 pages in revtex, 5 figures in eps format, will be appeared in Phys. Rev.

    Calculation of two- and three-dimensional transonic cascade flow field using the Navier-Stokes equations

    Get PDF
    A Navier-Stokes analysis employing the time-dependent Linearized Block Implicit scheme (LBI) was applied to two-dimensional and three-dimensional transonic turbulent cascade flows. In general, the geometrical configuration of the turbine blade impacts both the grid construction procedure and the implementation of the numerical algorithm. Since modern turbine blades of interest are characterized by very blunt leading edges, rounded trailing edges and high stacking angles, a robust grid construction procedure is required that can accommodate the severe body shape while resolving regions of large flow gradients. A constructive O-type grid generation technique, suitable for cascades with rounded trailing edges, was developed and used to construct the C3X turbine cascade coordinate grid. Two-dimensional calculations were performed employing the Navier-Stokes procedure for the C3X turbine cascade, and the predicted pressure coefficients and heat transfer rates were compared with the experimental data. Three-dimensional Navier-Stokes calculations were also performed

    Fractional Energy Loss and Centrality Scaling

    Full text link
    The phenomenon of centrality scaling in the high-\pt spectra of π0\pi^0 produced in Au-Au collisions at s=200\sqrt s=200 GeV is examined in the framework of relating fractional energy loss to fractional centrality increase. A new scaling behavior is found where the scaling variable is given a power-law dependence on NpartN_{\rm part}. The exponent γ\gamma specifies the fractional proportionality relationship between energy loss and centrality, and is a phenomenologically determined number that characterizes the nuclear suppression effect. The implication on the parton energy loss in the context of recombination is discussed.Comment: 4 pages in RevTe

    Downlink Steered Space-Time Spreading Assisted Generalised Multicarrier DS-CDMA Using Sphere-Packing-Aided Multilevel Coding

    No full text
    This paper presents a novel generalised Multi-Carrier Direct Sequence Code Division Multiple Access (MC DS-CDMA) system invoking smart antennas for improving the achievable performance in the downlink, as well as employing multi-dimensional Sphere Packing (SP) modulation for increasing the achievable diversity product. In this contribution, the MC DS-CDMA transmitter considered employs multiple Antenna Arrays (AA) and each of the AAs consists of several antenna elements. Furthermore, the proposed system employs both time- and frequency- (TF) domain spreading for extending the achievable capacity, when combined with a novel user-grouping technique for reducing the effects of Multiuser Interference (MUI). Moreover, in order to further enhance the system’s performance, we invoke a MultiLevel Coding (MLC) scheme, whose component codes are determined using the so-called equivalent capacity based constituent-code rate-calculation procedure invoking a 4-dimensional bit-to-SP-symbol mapping scheme. Our results demonstrate an approximately 3.8 dB Eb/N0 gain over an identical throughput scheme dispensing with SP modulation at a BER of 10?5
    corecore