25 research outputs found

    Transmembrane protein PERP is a component of tessellate junctions and of other junctional and non-junctional plasma membrane regions in diverse epithelial and epithelium-derived cells

    Get PDF
    Protein PERP (p53 apoptosis effector related to PMP-22) is a small (21.4 kDa) transmembrane polypeptide with an amino acid sequence indicative of a tetraspanin character. It is enriched in the plasma membrane and apparently contributes to cell-cell contacts. Hitherto, it has been reported to be exclusively a component of desmosomes of some stratified epithelia. However, by using a series of newly generated mono- and polyclonal antibodies, we show that protein PERP is not only present in all kinds of stratified epithelia but also occurs in simple, columnar, complex and transitional epithelia, in various types of squamous metaplasia and epithelium-derived tumors, in diverse epithelium-derived cell cultures and in myocardial tissue. Immunofluorescence and immunoelectron microscopy allow us to localize PERP predominantly in small intradesmosomal locations and in variously sized, junction-like peri- and interdesmosomal regions (“tessellate junctions”), mostly in mosaic or amalgamated combinations with other molecules believed, to date, to be exclusive components of tight and adherens junctions. In the heart, PERP is a major component of the composite junctions of the intercalated disks connecting cardiomyocytes. Finally, protein PERP is a cobblestone-like general component of special plasma membrane regions such as the bile canaliculi of liver and subapical-to-lateral zones of diverse columnar epithelia and upper urothelial cell layers. We discuss possible organizational and architectonic functions of protein PERP and its potential value as an immunohistochemical diagnostic marker

    Complexity and expression patterns of the desmosomal cadherins.

    No full text

    Desmosomes and cytoskeletal architecture in epithelial differentiation: cell type-specific plaque components and intermediate filament anchorage

    No full text
    Among the diverse kinds of intercellular, plaque-bearing, cadherin-containing junctions, desmosomes (maculae adhaerentes) represent a major type characterized by the presence of specific transmembrane glycoproteins, i.e. desmosomal cadherins of the desmoglein and desmocollin categories, and the cytoplasmic plaque proteins, desmoplakin I and plakoglobin. Recent studies, however, have shown that the composition of desmosomes is not identical in the various normal and tumorous desmosome-forming tissues and cell cultures, including diverse forms of epithelia and carcinomas, meningothelia and meningiomas, myocardium and the lymph node follicle reticulum. Desmosomes can differ in their specific complement of desmogleins, Dsg1-3, and desmocollins, Dsc1a-3b, as well as in the additional presence and in their relative amounts of certain accessory plaque proteins such as desmoplakin II and plakophilin 1, a basic member of the larger plakoglobin family of proteins ("band 6 protein"). Assembly and function of desmosomes are effected by the interaction of the specific complement of desmosomal cadherins with certain cytoplasmic proteins. In particular, the cytoplasmic portions ("tails") of the desmosomal cadherins contain certain domains and amino acid sequence motifs, identified by mutagenesis and transfection assays, that are essential elements in desmosome formation, notably the assembly of plaque proteins, and in the site-specific anchorage of intermediate-sized filaments (IFs) of the cytoskeleton, thereby contributing to the specific intracellular as well as supracellular, i.e. tissue, architecture

    Divide-and-conquer crystallographic approach towards an atomic structure of intermediate filaments

    No full text
    Intermediate filaments (IFs) represent an essential component of the cytoskeleton in higher eukaryotic cells. The elementary building block of the IF architecture is an elongated dimer with its dominant central part being a parallel double-stranded alpha-helical coiled coil. Filament formation proceeds via a specific multi-step association of the dimers into the unit-length filaments, which subsequently anneal longitudinally and finally radially compact into mature filaments. To tackle the challenge of a crystallographic structure determination, we have produced and characterised 17 overlapping soluble fragments of human IF protein vimentin. For six fragments ranging in length between 39 and 84 amino acid residues, conditions yielding macroscopic crystals could be established and X-ray diffraction data were collected to the highest resolution limit between 1.4 and 3 A. We expect that solving the crystal structures of these and further fragments will eventually allow us to patch together a molecular model for the full-length vimentin dimer. This divide-and-conquer approach will be subsequently extended to determining the crystal structures of a number of complexes formed by appropriate vimentin fragments, and will eventually allow us to establish the three- dimensional architecture of complete filaments at atomic resolution.status: publishe
    corecore