42 research outputs found

    Properties of Dense Strange Hadronic Matter with Quark Degrees of Freedom

    Get PDF
    The properties of strange hadronic matter are studied in the context of the modified quark-meson coupling model using two substantially different sets of hyperon-hyperon (YYYY) interactions. The first set is based on the Nijmegen hard core potential model D with slightly attractive YYYY interactions. The second potential set is based on the recent SU(3) extension of the Nijmegen soft-core potential NSC97 with strongly attractive YYYY interactions which may allow for deeply bound hypernuclear matter. The results show that, for the first potential set, the Σ\Sigma hyperon does not appear at all in the bulk at any baryon density and for all strangeness fractions. The binding energy curves of the resulting NΛΞN\Lambda\Xi system vary smoothly with density and the system is stable (or metastable if we include the weak force). However, the situation is drastically changed when using the second set where the Σ\Sigma hyperons appear in the system at large baryon densities above a critical strangeness fraction. We find strange hadronic matter undergoes a first order phase transition from a NΛΞN\Lambda\Xi system to a NΣΞN\Sigma\Xi for strangeness fractions fS>1.2f_S>1.2 and baryonic densities exceeding twice ordinary nuclear matter density. Furthermore, it is found that the system built of NΣΞN\Sigma\Xi is deeply bound. This phase transition affects significantly the equation of state which becomes much softer and a substantial drop in energy density and pressure are detected as the phase transition takes place.Comment: 25 pages latex and 12 figures in postscript forma

    Properties of dense strange hadronic matter with quark degrees of freedom

    Get PDF
    The properties of strange hadronic matter are studied in the context of the modified quark-meson coupling model using two substantially di erent sets of hyperon-hyperon (Y Y ) interactions. The first set is based on the Nijmegen hard core potential model D with slightly attractive Y Y interactions. The second potential set is based on the recent SU(3) extension of the Nijmegen soft-core potential NSC97 with strongly attractive Y Y interactions which may allow for deeply bound hypernuclear matter. The results show that, for the first potential set, the hyperon does not appear at all in the bulk at any baryon density and for all strangeness fractions. The binding energy curves of the resulting N system vary smoothly with density and the system is stable (or metastable if we include the weak force). However, the situation is drastically changed when using the second set where the hyperons appear in the system at large baryon densities above a critical strangeness fraction. We find strange hadronic matter undergoes a first order phase transition from a N system to a N for strangeness fractions fS > 1.2 and baryonic densities exceeding twice ordinary nuclear matter density. Furthermore, it is found that the system built of N is deeply bound. This phase transition a ects significantly the equation of state which becomes much softer and a substantial drop in energy density and pressure are detected as the phase transition takes place. PACS:21.65.+f, 24.85.+p, 12.39B

    Hot nuclear matter in the modified quark-meson coupling model with quark-quark correlations

    Get PDF
    Short-range quark-quark correlations in hot nuclear matter are examined within the modified quark-meson coupling model (MQMC) by adding repulsive scalar and vector quark-quark interactions. Without these correlations, the bag radius increases with the baryon density. However when the correlations are introduced the bag size shrinks as the bags overlap. Also as the strength of the scalar quark-quark correlation is increased, the decrease of the effective nucleon mass MNM^{*}_N with the baryonic density is slowed down and tends to saturate at high densities. Within this model we study the phase transition from the baryon-meson phase to the quark-gluon plasma (QGP) phase with the latter modeled as an ideal gas of quarks and gluons inside a bag. Two models for the QGP bag parameter are considered. In one case, the bag is taken to be medium-independent and the phase transition from the hadron phase to QGP is found to occur at 5-8 times ordinary nuclear matter density for temperatures less than 60 MeV. For lower densities, the transition takes place at higher temperature reaching up to 130 MeV at zero density. In the second case, the QGP bag parameter is considered medium-dependent as in the MQMC model for the hadronic phase. In this case, it is found that the phase transition occurs at much lower densities.Comment: 8 pages, latex, 4 eps figure

    The thermodynamics for a hadronic gas of fireballs with internal color structures and chiral fields

    Full text link
    The thermodynamical partition function for a gas of color-singlet bags consisting of fundamental and adjoint particles in both U(Nc)U(N_c) and SU(Nc)SU(N_c) group representations is reviewed in detail. The constituent particle species are assumed to satisfy various thermodynamical statistics. The gas of bags is probed to study the phase transition for a nuclear matter in the extreme conditions. These bags are interpreted as the Hagedorn states and they are the highly excited hadronic states which are produced below the phase transition point to the quark-gluon plasma. The hadronic density of states has the Gross-Witten critical point and exhibits a third order phase transition from a hadronic phase dominated by the discrete low-lying hadronic mass spectrum particles to another hadronic phase dominated by the continuous Hagedorn states. The Hagedorn threshold production is found just above the highest known experimental discrete low-lying hadronic mass spectrum. The subsequent Hagedorn phase undergoes a first order deconfinement phase transition to an explosive quark-gluon plasma. The role of the chiral phase transition in the phases of the discrete low-lying mass spectrum and the continuous Hagedorn mass spectrum is also considered. It is found crucial in the phase transition diagram. Alternate scenarios are briefly discussed for the Hagedorn gas undergoes a higher order phase transition through multi-processes of internal color-flavor structure modification.Comment: 110 pages and 13 figures. Added references to the introductio

    Hot hypernuclear matter in the modified quark meson coupling model

    Get PDF
    Hot hypernuclear matter is investigated in an explicit SU(3) quark model based on a mean field description of nonoverlapping baryon bags bound by the self-consistent exchange of scalar sigma, zeta and vector omega,phi mesons. The sigma, omega mean fields are assumed to couple to the u, d-quarks while the zeta ,phi mean fields are coupled to the s-quark. The coupling constants of the mean fields with the quarks are assumed to satisfy SU(6) symmetry. The calculations take into account the medium dependence of the bag parameter on the scalar fields sigma, zeta. We consider only the octet baryons N,Lambda,Sigma, Xi in hypernuclear matter. An ideal gas of the strange mesons K and K is introduced to keep zero net strangeness density. Our results for symmetric hypernuclear matter show that a phase transition takes place at a critical temperature around 180 MeV in which the scalar mean fields sigma, zeta take nonzero values at zero baryon density. Furthermore, the bag contants of the baryons decrease significantly at and above this critical temperature indicating the onset of quark deconfinement. The present results imply that the onset of quark deconfinement in SU(3) hypernuclear matter is much stronger than in SU(2) nuclear matter. PACS:21.65.+f, 24.85.+p, 12.39B

    Reversible myocardial calcification following severe leptospirosis complicated with rhabdomyolysis-induced acute kidney injury and magnesium-wasting nephropathy

    Get PDF
    We present a patient with leptospirosis infection who presented septic shock with multiple-organ dysfunction syndrome, severe rhabdomyolysis and acute myocarditis. He developed biphasic blood calcium pattern with hypocalcemia in the oliguric phase followed by hypercalcemia during the recovery diuretic phase in the context of rhabdomyolysis and oliguric acute kidney injury. Meanwhile, he developed an extensive calcification of the myocardium. Severe renal magnesium wasting was observed during the convalescence phase. Follow-up showed progressive resorption and later almost total disappearance of the calcific deposits in the heart by the 18th month after discharge. Renal magnesium wasting decreased gradually, but yet persisted beyond the 18th and was normalized only by the 36th month after discharge. We discuss the pathophysiologic mechanisms involved in the myocardial calcification and renal magnesium wasting and suggest a possibility of a contributing role of magnesium renal wasting in mobilization of calcium deposits out of myocardiu

    Adrenal Insufficiency in Metastatic Lung Cancer

    Get PDF
    We report a case of adrenal insufficiency in patient with lung cancer. Although adrenal metastases are common in cancer patients, adrenal insufficiency is a rare occurrence. Diagnosis and treatment of adrenal insufficiency will improve the physical status and the quality of life in those patients

    Numerical solution of the color superconductivity gap in a weak coupling constant

    Get PDF
    We present the numerical solution of the full gap equation in a weak coupling constant gg. It is found that the standard approximations to derive the gap equation to the leading order of coupling constant are essential for a secure numerical evaluation of the logarithmic singularity with a small coupling constant. The approximate integral gap equation with a very small gg should be inverted to a soft integral equation to smooth the logarithmic singularity near the Fermi surface. The full gap equation is solved for a rather large coupling constant g2.0g\ge 2.0. The approximate and soft integral gap equations are solved for small gg values. When their solutions are extrapolated to larger gg values, they coincide the full gap equation solution near the Fermi surface. Furthermore, the analytical solution matches the numerical one up to the order one O(1). Our results confirm the previous estimates that the gap energy is of the order tens to 100 MeV for the chemical potential μ1000\mu\le 1000 MeV. They also support the validity of leading approximations applied to the full gap equation to derive the soft integral gap equation and its analytical solution near the Fermi surface.Comment: 7 pages+ 6 figs, Stanford, Frankfurt and Bethlehe

    Hot Nuclear Matter in the Quark Meson Coupling Model with Dilatons

    Get PDF
    We study hot nuclear matter in an explicit quark model based on a mean field description of nonoverlapping nucleon bags bound by the self-consistent exchange of scalar and vector mesons as well as the glueball field. The glueball exchange as well as a realization of the broken scale invariance of quantum chromodynamics is achieved through the introduction of a dilaton field. The calculations also take into account the medium-dependence of the bag constant. The effective potential with dilatons is applied to nuclear matter. The nucleon properties at finite temperature as calculated here are found to be appreciably different from cold nuclear matter. The introduction of the dilaton potential improves the shape of the saturation curve at T=0 and is found to affect hot nuclear matter significantly.Comment: LaTeX/TeX 12 pages (zak2), 13 figures in TeX forma
    corecore