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Abstract

The properties of strange hadronic matter are studied in the context of the

modified quark-meson coupling model using two substantially different sets of

hyperon-hyperon (Y Y ) interactions. The first set is based on the Nijmegen

hard core potential model D with slightly attractive Y Y interactions. The

second potential set is based on the recent SU(3) extension of the Nijmegen

soft-core potential NSC97 with strongly attractive Y Y interactions which may

allow for deeply bound hypernuclear matter. The results show that, for the

first potential set, the Σ hyperon does not appear at all in the bulk at any

baryon density and for all strangeness fractions. The binding energy curves

of the resulting NΛΞ system vary smoothly with density and the system is

stable (or metastable if we include the weak force). However, the situation is

drastically changed when using the second set where the Σ hyperons appear in

the system at large baryon densities above a critical strangeness fraction. We

find strange hadronic matter undergoes a first order phase transition from

a NΛΞ system to a NΣΞ for strangeness fractions fS > 1.2 and baryonic

densities exceeding twice ordinary nuclear matter density. Furthermore, it is

found that the system built of NΣΞ is deeply bound. This phase transition

affects significantly the equation of state which becomes much softer and a

substantial drop in energy density and pressure are detected as the phase

transition takes place.
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I. INTRODUCTION

Extremely dense strange quark matter with a strangeness fraction of order one and charge
neutrality has been suggested to be the absolutely stable form of matter at high densities
(or at least to be metastable because of the weak interaction) [1–4]. Finite chunks of strange
quark matter with large strangeness fractions, the so-called strangelets, are predicted to be
more stable than normal nuclei [3,5–7]. Recent theoretical and experimental searches for
strange quark matter can be found in Refs. [8,9]

On the other hand, metastable strange systems with strangeness fractions of order one
and charge neutrality might also exist in the hadronic phase at moderate values of den-
sity, between two and three times nuclear matter density. The properties of metastable
exotic multihypernuclear objects with Λ and Ξ hyperons reveal quite similar features as the
strangelets proposed as a unique signature for quark-gluon plasma formation in heavy ion
collisions [10]. The equilibrium between the quark and hadronic phases has been studied in
[11]. Strange hadronic matter in bulk has been discussed by Glendenning [12].

It is found that in an extended mean field theory, a large class of bound multistrange
objects formed from combinations of (N,Λ,Ξ) baryons are stable against strong decay. The
presence of filled Λ orbitals blocks the strong decay ΞN → ΛΛ [13]. The maximal binding
energy per baryon of EB/A ≈ −21MeV occurs at a strangeness fraction or strangeness per
baryon fs ≈ 1.0-1.2, charge per baryon fq ≈ -0.1-0.0 and baryon density 2.5-3 times that of
ordinary nuclei [14]. It is comparable to that of hypothetically stable strange quark matter
(“strangelets”), which has a binding energy per particle EB/A ≈ -10 to -20 MeV.

The predicted phenomenon of metastability of strange hadronic matter and the actual
values of the binding energy depend specifically on the partly unknown hyperon potentials
assumed in dense matter. Some studies used basically Brueckner-Hartree-Fock (BHF) calcu-
lations with different Nijmegen soft core potentials [15,16]. Other studies [14,17,18] extend
relativistic mean field theory (RMF) from ordinary nuclei (fS = 0) to multistrange nuclei
with (fS 6= 0) with the attractive Y Y interaction of the Nijmegen potential Model D [19].

Recently, Stoks and Lee [20] have studied strange hadronic matter using BHF theory
and G matrices for coupled baryon channels using an SU(3) extension [21–23] of the Ni-
jmegen soft core NSC97 potential from the S =0,-1 sector into the unexplored S =-2,-3,-4
sector. They have shown that NΛΞ systems are only loosely bound and that charge neu-
tral strangeness-rich hadronic systems are unlikely to exist in nature. Unfortunately their
procedure is not self-consistent due to the constraint of equal hyperon fractions that they
impose and hence does not give the minimum energy [24].

Schaffner-Bielich and Gal [24] have carried out unconstrained RMF calculations and
have found larger binding energies. For small strangeness fractions fS ≤ 1, strange hadronic
matter is mainly composed of NΛΞ and the calculated binding energy closely follows that
calculated by using the hyperon potentials of the earlier versions of the soft core Nijmegen
potential. For larger strangeness fractions fS ≥ 1, the calculated binding energy increases
substantially due to a phase transition into NΣΞ dominated matter.

In this work we use the quark-meson coupling Model (QMC) to study strange hadronic
matter. The QMC model uses the quark degrees of freedom explicitly by coupling the scalar
σ and vector ω mesonic fields directly to the up and down quarks inside the hadrons which
are treated as non-overlapping MIT bags. It was first proposed by Guichon [25] and has been
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used in various nuclear calculations [26,27]. More recently it has been modified to include
a medium-dependent bag parameter coupled to the scalar σ field [28,29]. This coupling
is motivated by invoking the nontopological soliton model for the nucleon [30]. Quark
deconfinement in hot nuclear matter and the phase transition from the hadronic phase to
the quark-gluon plasma have been studied in this model [31,32]. This modified quark-meson
coupling model (MQMC) [28,29] has been extended to the study of strange hadronic matter
by introducing additional scalar σ∗(ss) and vector φ(ss) mesonic fields which couple only
to the strange quark. This extended model has been used to study the properties of hot
hypernuclear matter [33] and neutron star matter [34].

We assume strange hadronic matter to consist of the baryon members of the SU(3)
octet and decuplet. The octet is comprised of the nucleons and the Λ, Σ and Ξ hyperons
while the decuplet contains the ∆,Σ,Ξ and Ω baryons. The decuplet baryons are however
not found to have a significant contribution in the current calculations at zero temperature
and are henceforth dropped from our formalism. We studied this system with two sets of
hyperon-hyperon (Y Y ) potentials, the first set is determined from the Nijmegen hard-core
potential Model D and the second set corresponds to the potentials obtained in a recent
SU(3) extension of the Nijmegen soft-core potential Model NSC97. The differences between
these sets are essentially attributable to the extremely attractive ΣΣ and ΞΞ interactions
in the second set which allow the possibility of deeply bound nuclear matter with hyperons.
We also consider these two potential models in the context of the QMC model with medium
independent bag constant.

The current paper is organized as follows. In section II we describe the details of the
MQMC model, in section III we show how we fit the various parameters in the model and
in section IV we present and discuss our results. Finally we summarize our conclusions in
section V.

II. THE MQMC MODEL

In the QMC model, the quark field ψq(~r, t) inside a bag of radius Ri representing a
baryon of species i satisfies the Dirac equation

[

iγµ∂µ −m0
q + (gqσσ − gqωωµγ

µ) + (gqσ∗σ
∗ − gqφφµγ

µ)
]

ψq(~r, t) = 0, (1)

where the quark is assumed to couple directly to the scalar and vector meson fields and m0
q

is the current mass of a quark of flavor q. The current quark masses are taken, for the up
and down flavor quarks, to be mu = md = 0 while for the strange flavor ms = 150MeV
Inclusion of small current quark masses for the nonstrange flavors or other values for the
strange flavor leads only to small numerical refinements of the present results. In the mean
field approximation the meson fields are treated classically and the space like components
of the vector fields vanish for infinite systems due to rotational invariance. As a result
ωµγ

µ =< ω0 > γ0 = ωγ0 and φµγ
µ =< φ0 > γ0 = φγ0. The nonstrange (up and down)

flavor quarks are coupled to the scalar σ(550) and vector ω(780) mesons while the strange
flavor quarks are coupled to σ∗(975) and φ(1020).

For a given value of the bag radius Ri for baryon species i and the scalar fields σ and σ∗,
the quark momentum xi

q is determined by the boundary condition of confinement which, for
quarks of flavor q in a spherical bag, reduces to j0(x

i
q) = βqj1(x

i
q), where
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βq =

√

√

√

√

Ωi
q(σ, σ

∗) −Rim∗

q

Ωi
q(σ, σ

∗) +Rim∗

q

. (2)

We have defined the effective quark mass inside the bag as

m∗

q = m0
q − gqσσ − gqσ∗σ

∗, (3)

and the effective quark energy is given by

Ωi
q(σ, σ

∗)/Ri =
√

(xq/Ri)2 +m∗

q
2. (4)

The bag energy for baryon species i is given by

Ei
bag =

3
∑

q

nq

Ωi
q(σ, σ

∗)

Ri
− Zi

Ri
+

4π

3
R3

iBi(σ, σ
∗), (5)

where Zi

Ri

term is the zero-point energy of the quarks and Bi(σ, σ
∗) is the medium-dependent

bag parameter. In the simple QMC model, the bag parameter is taken as B0 corresponding
to its value for a free baryon. The medium effects are taken into account in the MQMC
model [28,29] by coupling the bag parameter to the scalar meson fields. In the present work
we use the following generalized ansatz for the coupling of the bag parameter to the scalar
fields

Bi(σ, σ
∗) = B0 exp

[

−4
(

g
bag
iσ σ + g

bag
iσ∗ σ∗)/Mi

)]

(6)

with g
bag
iσ and g

bag
iσ∗ as additional parameters. Here it may be worth mentioning that in

Ref. [18] the bag constant is coupled to the nonstrange σ scalar field but not to σ∗.
The spurious center-of-mass energy is subtracted to obtain the effective baryon mass [35]

M∗

i =

√

Ei
bag

2− < p2
cm >i, (7)

where

< p2
cm >i=

3
∑

q

nqx
2
q/R

2
i . (8)

The bag radius Ri for baryon species i is obtained through the minimization of the baryon
mass with respect to the bag radius [27]

∂M∗

i

∂Ri

= 0. (9)

The zero-point energy parameters Zi of Eq.(4) are used to fit the actual masses of the free
baryons Mi = 939, 1116, 1189 and 1315MeV and are found to be Zi=2.03, 1.814, 1.629
and 1.505 for the N,Λ,Σ and Ξ hyperons respectively, corresponding to a free baryon bag
parameter B0 = (188.1)4MeV4 and a free nucleon bag radius R0 = 0.6fm.
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The total energy density of cold infinite strange hadronic matter at finite baryon density
ρB is given by

ε =
∑

i

γi

(2π)3

∫

d3k
√

k2 +M∗

i
2θ(ki

F − k) +
1

2
m2

ωω
2 +

1

2
m2

φφ
2 +

1

2
m2

σσ
2 +

1

2
m2

σ∗σ
∗2 (10)

where the summation i runs over the 8 members of the baryon octet which reduces for
symmetric hypernuclear matter to 4 species with the spin-isospin degeneracy factors γi =
4, 2, 6 and 4 for N , Λ, Σ and Ξ, respectively and where θ is the step function at the Fermi
momentum ki

F .
The effective Fermi energy of baryon species i is given by

ǫ∗i (k
i
F ) =

√

ki
F

2
+M∗

i
2 + giωω + giφφ (11)

which is equal to the chemical potential µi

µi = BiµB + SiµS, (12)

where Bi and Si are the baryon and strangeness quantum numbers, respectively. The two
independent chemical potentials µB and µS are obtained from the conservation of the total
baryon density

ρB =
1

(2π)3

∑

i

Biγi

∫

d3kθ(ki
F − k), (13)

and the total strangeness density

ρS =
1

(2π)3

∑

i

Siγi

∫

d3kθ(ki
F − k). (14)

The vector mean fields are determined by

ω =
∑

i

giω

m2
ω

ρi, (15)

and

φ =
∑

i

giφ

m2
φ

ρi, (16)

where giω and giφ are the meson-baryon coupling constants defined in Eqs. (18) and (19)
below.

The pressure is the negative of the grand thermodynamic potential density and is given
by

P =
1

3

∑

i

γi

(2π)3

∫

d3k
k2

ǫ∗i
θ(ki

F − k) +
1

2
m2

ωω
2 +

1

2
m2

φφ
2 − 1

2
m2

σσ
2 − 1

2
m2

σ∗σ
∗2. (17)
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III. FITTING PARAMETERS FOR Y Y POTENTIALS

We assume that the σ and ω mesons couple only to the up and down quarks while σ∗

and φ couple to the strange quark. We thus set grφ = grσ∗ = gsσ = gsω = 0 where r refers
to the up and down flavors while s denotes the strange flavor. By assuming the SU(6)
symmetry of the simple quark model we have the relations gsσ∗ =

√
2grσ and gsφ =

√
2grω.

The coupling of each baryon species with the vector mesons is calculated by counting the
constituent quarks

giω =
3

∑

q

gqω =
∑

r

grω, (18)

and

giφ =
3

∑

q

gqφ =
∑

s

gsφ. (19)

With these assumptions the only free parameters left at our disposal are the quark-meson

coupling constants grσ and grω and the bag coupling constants g
bag
iσ , g

bag
iσ∗ for the 4 baryon

species and these parameters are adjusted to fit nuclear properties as well as the extrapolated
properties of hypernuclear matter. The coupling constants of the scalar and vector mesons
to the nonstrange quarks are taken as grσ = 1 and grω = 2.705 which together with a bag

coupling constant g
bag
Nσ∗ = 6.81 yield a binding energy of 16 MeV and a compressibility K−1

V

of 289 MeV at the normal saturation density ρ0 = 0.17fm−3 of nuclear matter [29,31] .
Table I summarizes the values used in the current work for the basic quark-meson cou-

pling constants as well as the two sets of the coupling constants g
bag
iσ and g

bag
iσ∗ in the bag

parameter Bi(σ, σ
∗). These sets are chosen to fit nuclear and hypernuclear properties. The

parameters g
bag
iσ are taken to fit the hyperon potentials in nuclear matter:

U
(N)
Λ (ρ0) = −30MeV,

U
(N)
Σ (ρ0) = +30MeV,

U
(N)
Ξ (ρ0) = −18MeV,

(20)

where the hyperon potentials are defined by

U
(i)
i = (M∗

i −Mi) + (giωω + giφφ). (21)

However, we make two different choices for the constants g
bag
iσ∗ . In the first set, referred to

hereafter as MQMC-I, the medium constants g
bag
iσ∗ are adjusted so that the potential of a

single hyperon embedded in a bath of Ξ matter becomes

UΞ
Ξ (ρ0) = UΞ

Λ (ρ0) = −40MeV (22)

in accordance with the attractive hyperon-hyperon interaction of the Nijmegen potential
Model D [13,18]. Furthermore, we adopt the approximation UΞ

Ξ (ρ0) ≈ UΞ
Σ(ρ0) to fit the

medium constants. The resulting U
(Λ)
Λ (ρ0/2) is about -20 MeV.
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In MQMC-II, we adopt the Y Y interactions which occur in the most recent SU(3)
extension of the Nijmegen soft-core potential Model NSC97 [20–22]. The phenomenology
in this model departs substantially from that in MQMC-I. In particular, the ΣΣ and ΞΞ
interactions are predicted to be highly attractive in some channels, leading to bound states.

We have adjusted the bag constants g
bag
iσ∗ where i = Λ,Σ,Ξ to reproduce qualitatively the

same binding energy curves of each hyperon species in its own hyperonic matter Bi
i as those

produced by the Model NSC97f [20,24]. The resulting binding energy curves are shown in
Fig.1. No binding occurs for Λ hyperons which are already unbound by 8-10 MeV at the
rather low density ρB = 0.05fm−3. On the other hand, Σ matter is deeply bound at -33
MeV per baryon at ρΣ0 which is twice as deep as ordinary nuclear matter, and Ξ matter has
an energy of -23 MeV per baryon at ρΞ0.

Furthermore, we have also considered the original (unmodified) QMC model where the
bag constant is considered to be medium-independent and simply takes its free space value
B0. In analogy with the MQMC calculations we consider two sets of parameters. The
QMC-I set reproduces the Y Y potentials corresponding to the Nijmegen hard core potential
model D as in MQMC-I. The scalar coupling constants are taken as gqσ = 5.31 and gsσ∗ =√

2gqσ while the vector ones are taken as gqω=1.471, 1.868, 5.148 and 1.662 and gsφ=0.0,
2.289, 0.0 and 3.017 for N,Λ,Σ and Ξ, respectively. The QMC-II set reproduces the Y Y
potentials corresponding to the Nijmegen soft-core potential NSC97 as in MQMC-II. The
scalar coupling constants are taken to be the same as in QMC-I while the vector ones are
taken as gqω=1.471, 2.942, 1.103 and 1.721 and gsφ=0.0, 4.160, 1.560 and 2.434 for N,Λ,Σ
and Ξ, respectively.

IV. RESULTS AND DISCUSSIONS

The resulting energy per particle curves of each baryon species j in its own matter E
(j)
j

are depicted in Fig. 1 as a function of density for models MQMC-I and II. For nucleons, the
curves are the same in both models since they fit the same nuclear matter properties. In
MQMC-I, the interactions for Λ and Σ are repulsive with EΛ

Λ=+10 MeV and EΣ
Σ=+5 MeV

at ρB = 0.15fm−3 for Λ and Σ hyperons respectively. The Λ hyperon has a shallow local
minimum at ρB = 0.13fm−3 while EΞ

Ξ has an absolute minimum of −7.5MeV per baryon
at ρ ∼= 0.29fm−3. On the other hand, for MQMC-II, the energy EΛ

Λ reaches +20 MeV
already at a density ρB = 0.1fm−3. This more repulsive potential can be attributed to the
very weak underlying ΛΛ interaction in the extended NSC97 Model. In contrast, the Σ
hyperon is deeply bound with a minimum of −33 MeV per baryon at ρB = 0.46fm−3. Also
Ξ hyperon matter has a strong attractive potential with a minimum of -23 MeV per baryon
at ρ = 0.39fm−3. This shows that MQMC-II predicts that the ΣΣ and ΞΞ interactions are
highly attractive in some channels, leading to bound states. It is also clear that a mixture
of Σ and Ξ matter must be very deeply bound unless there is an overwhelmingly repulsive
interaction between the Σ and Ξ hyperons.

Figs. 2 and 3 display the effective masses of the baryons (N,Λ,Σ,Ξ) vs ρB for several
strangeness fractions fS using MQMC-I and II, respectively. In MQMC-I, the effective mass
for each baryon species decreases monotonically with density. It is seen that as fS increases,
M∗

N increases while M∗

Σ and M∗

Ξ decrease. The Λ hyperon effective mass however is only
weakly sensitive to variations in fS. In MQMC-II, the situation is rather different, as can
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be seen from Fig. 3. At first the effective masses of the nucleon and Λ hyperon decrease
smoothly with ρB for low strangeness fractions. As fS exceeds 1.4, these effective masses
jump suddenly to higher values as ρB reaches a critical value and then start to decrease
again monotonically for higher values of ρB. The jump or discontinuity in the effective mass
of the nucleon can be as high as 75 MeV for fS = 1.5 at a critical density of 0.57fm−3. The
Λ hyperon has a jump of around 40 MeV for fS = 1.5 at a critical density ρB = 0.57fm−3.
The effective masses of the Σ and Ξ hyperons have the opposite behavior with M∗

Σ and M∗

Ξ

decreasing when the net strangeness fraction fS of the system increases. Furthermore they
suddenly jump to lower values as ρB exceeds a critical density for fS > 1.4. It is interesting
to note that in MQMC-II the various effective baryon masses become independent of fS for
fS ≥ 1.5 and ρB > 0.60fm−3. This behavior indicates that a phase transition takes place in
MQMC-II at the critical densities where the discontinuities in the effective mass occur. The
nature of this transition from the NΛΞ phase to the NΣΞ phase will become apparent in
the following figures.

Figs. 4 and 5 display the density dependence of the bag radius Ri for the N,Λ,Σ and
Ξ baryons for several strangeness fractions fS using models MQMC-I and II, respectively.
The thick solid line indicates the limiting bag radius value Rexc = (3/4πρB)1/3 where the
excluded volume occupies all space and the assumption of nonoverlapping bags definitely
breaks down. It is interesting to note here that the bag radius in MQMC tends to increase
with the increasing baryon density in contrary to the ordinary QMC models where the bag
radius tends to decrease slowly or saturate at a constant value. This is because in MQMC
the bag parameter decreases with density which allows the bag to expand. This problem
can be cured by introducing quark-quark correlations [32] which however are not included in
the present calculations. Such correlations tend to make the bags shrink at higher densities
so that the overlap assumption is not violated and Rexc will have values much larger than
those given by the thick line in Fig. 4. Finally it is observed that in MQMC-I the radius of
the nucleon decreases while RΣ and RΞ increase with increasing strangeness fractions while
RΛ is almost unaffected by variations in fS.

In contrast to MQMC-I where the bag radius increases monotonically with baryon density
ρB we notice from Fig. 5 that in MQMC-II this variation has sudden jumps or discontinuities
for fS ≥ 1.4. For example, for a strangeness fraction fS = 1.5, RN drops from 0.775fm to
0.725fm when the baryon density reaches ρB = 0.55fm−3. The shrinking in the nucleon bag
size for fS > 1.4 takes place before the breakdown in the nonoverlap assumption even in
the current calculations where the quark-quark correlations are not included. Furthermore,
the phase transition tends to occur at lower and lower densities as fS increases and the
bag radius becomes independent of fS. The same behavior is found for the radius of the
Λ hyperons but the situation is a quite different for the Σ and Ξ hyperons. RΣ (RΞ) both
increase with respect to fS and both jump to a higher value at the critical baryon density
when the phase transition takes place for fS exceeding 1.4. With fS = 1.5, Rexc is reached
at ρB = 0.50fm−3 for Σ and Ξ hyperons indicating that, even with the neglect of quark-
quark correlations, MQMC-II is valid up to ρB = 0.50fm−3 for such large finite strangeness
fractions.

Fig. 6 displays the binding energy per baryon for strange hadronic matter vs the baryon
density ρB for various strangeness fractions fS. It is noted in Fig.6(a) that the energy curves
for MQMC-I have only one global minimum for every value of the strangeness fraction fS.
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At first, the depth of the minimum increases as fS increases until it reaches a strangeness
fraction of about 1.3 after which the depth of the minimum decreases again for higher values
of fS and approaches that of purely Ξ matter for fS = 2. It is found that in MQMC-I
strange hadronic matter is built out always from a mixture of N,Λ and Ξ baryons. Hence
each energy curve has only one global minimum.

Fig. 6(b) indicates that the situation for MQMC-II is drastically different. For low values
of fS each curve still has a single minimum whose depth increases with the increase in the
strangeness fraction. However, when fS reaches about 1.3, a second minimum appears at a
rather high density ρB = 0.86fm−3. Moreover, this second energy minimum quickly deepens
and reaches −39 and −56 MeV for fS = 1.4 and 1.5, respectively. The appearance of this
second minimum can be attributed to the increasingly dominant presence of the Σ hyperons
in the system which seems to undergo a first order phase transition from NΛΞ and NΞ to
NΣΞ strange hadronic matter but at a rather higher baryonic density. For values of the
strangeness fraction fS greater than 1.5 the potential well depth starts to decrease again as
the Ξ starts to dominate and the energy curves gradually approach that for pure Ξ matter
for fS = 2.

Fig. 7 displays the depth of the energy minimum and the corresponding baryonic density
as functions of the strangeness fraction fS. It is evident that the depth of the minimum in
MQMC-I increases with the strangeness fraction until the curve has a maximum binding
energy of 19MeV at fS = 1.2. The binding energy magnitude decreases again as fS increases
to form pure Ξ matter at fS = 2.0 with a binding energy of 10 MeV. As can be seen from
Fig.7(b) the locations of these minima appear at higher densities as fS increases until it
reaches fS = 1.2 where it hovers around ρB = 0.40fm−3 for fS = 1.2−1.6. Beyond fS = 1.6,
the location of the energy minimum moves to lower densities.

The situation for MQMC-II is rather similar to that of MQMC-I for fS < 1.3, but it is
essentially different for fS ≥ 1.3. When the strangeness fraction reaches fS = 1.3, a second
minimum in the binding energy appears at ρB = 0.86fm−3. Furthermore, the first minimum
disappears at fS = 1.5 and a transition to the second minimum (the NΣΞ phase) occurs
due to the reaction NΞ → ΣΣ. The upper and lower branches of the MQMC-II curve
in Fig.7(b) thus refer to two different phases with the discontinuity in the density of the
system indicating it is a first order transition. The binding energy reaches a maximum of
56 MeV for fS = 1.5 and ρB = 0.64fm−3 and then decreases to 25.7 MeV as fS increases to
fS = 2 where the second minimum disappears since the system is now composed solely of Ξ
hyperons. We also display in Fig. 7 the results for the QMC-I and QMC-II models which
are seen to be very similar to those found in MQMC-I with a single stable NΛΞ phase.
In particular, unlike MQMC-II, QMC-II does not lead to a stable NΣΞ system. Finally
it is worth mentioning that, due to the shrinking of the bag radius with increasing baryon
density, the nonoverlap assumption survives up to ρB > 1.1fm−3.

Figs. 8 and 9 display the fractional density of each baryon species ρi/ρB in strange
hadronic matter versus the total baryon density ρB for several values of fS for Models I
and II, respectively. It is seen that in MQMC-I the Σ hyperon does not appear at all while
the Λ has a substantial contribution for low densities ρB ≤ 0.1fm−3. The Λ contribution,
however, drops substantially for higher densities to saturate at a constant value around
ρΛ/ρB = 0.20 − 0.25 for ρB ≥ 0.2fm−3 and fS = 0.5 − 1.8. It also disappears for fS = 0
(nuclear matter) and fS = 2.0 (pure Ξ matter). The contribution of the nucleons ρN/ρB
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decreases monotonically from one to zero as fS increases from zero to two. For fS ≥ 1
the nucleons comprise a surprisingly small fraction of the total number of baryons for small
densities but their contribution increases rapidly and saturates at higher densities. The
variation of the contribution of the Ξ hyperons with density is similar to that of the nucleons
but with ρΞ/ρB increasing from zero to one as fS increases from zero to two.

Fig. 9 shows however that the situation is significantly different in MQMC-II, with the
Σ hyperons appearing above some critical density and their contribution rapidly saturating
at higher densities. The fractional density ρΣ/ρB takes its maximum value of about 50%
at fS = 1.5. The Λ hyperon contribution is large at low baryon densities ρB < 0.10 but
practically disappears for higher densities for fS ≥ 1. The fractional densities for the N ’s
and Ξ’s in MQMC-II are similar to those in MQMC-I except for fS ≥ 1.2 where there is a
depletion at high densities caused by the appearance of the Σ hyperons in the system. The
nucleons even disappear completely at high densities for fS ≥ 1.5.

Figs. 10 and 11 display µi/ǫ
∗

i (0) vs ρB ǫ∗i is the Fermi energy and µi is the chemical
potential, eqs. (11) and (12). If the ratio µi/ǫ

∗

i (kF = 0) < 0 baryons of species i cannot
exist in the system. The baryon species first appears with zero fermi momentum kF = 0
when this ratio reaches one and then takes a finite fermi momentum as the ratio exceeds
one. ¿From Fig. 10 it is evident that in MQMC-I the Σ hyperons cannot be produced at all
in strange hadronic matter. Furthermore, N production is increasingly suppressed while Ξ
production is enhanced as fS increases.

The situation is quite different in MQMC-II, Fig. 11, where the Σ hyperons appear
in the system for strangeness fractions fS ≥ 1.0. They first appear at ρB ≥ 0.85 for
fS = 1.0 and as fS increases they appear at lower baryon densities. However, the situation is
opposite for Λ which is produced abundantly for low strangeness fractions fS < 1.0 and then
disappears when fS exceeds 1.0. The contribution of the nucleons decreases significantly for
fS > 1.3 and they disappear completely from the system at fS = 1.5 when the baryon density
exceeds ρB = 0.65fm−3. Furthermore, the nucleons disappear at lower baryon densities as
the strangness fraction fS increases. It is thus seen that N production in MQMC-II is
influenced drastically by the transition from the NΛΞ phase to the NΣΞ phase. On the
other hand, Ξ hyperon production in MQMC-II is not much different from that in MQMC-I.

Finally, Fig.12 displays the pressure vs the baryon density ρB for Models I and II. MQMC-
I has the normal van der Waal-type loop at small densities reflecting the gas to liquid phase
transition. In MQMC-II the pressure has an additional sudden and significant drop at high
densities ρB > 0.55fm−3 for strangeness fractions fS ≥ 1.5. This dramatic drop in the
pressure is due to the transition from the NΛΞ phase to the NΣΞ phase in strange hadronic
matter and probably provides an experimental clue for it.

V. SUMMARY AND CONCLUSION

In the present work, we have studied, within the context of the MQMC model, the
properties of strange hadronic matter composed of the SU(3) octet baryons N,Λ,Σ and Ξ
using two different models for the hyperon-hyperon interactions. It is interesting to note
here that the medium dependent bag constant for each baryon species reflect more realistic
self interaction with the scalar mean fields which are corresponding to the nonlinear terms
of the scalar mean fields in the normal RMF calculations.
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MQMC-I is designed to mimic the consequences of the Nijmegen hard-core potential
model D [19,13,17]. It is nevertheless constrained by Λ and Ξ nuclear phenomenology, and
by a few ΛΛ hypernuclear species reported to date. It accounts more realistically for the
attractive ΛΛ and NΞ interactions, but ignores altogether Σ hyperons. On the other hand,
MQMC-II is designed to generate qualitatively similar baryon potentials to those obtained
in the BHF approximation from the SU(3) extensions of the Nijmegen soft-core NSC97
potential models. The NSC97 model has been tuned up to reproduce certain characteristics
of Λ hypernuclei, particularly its version NSC97f. It yields particularly attractive ΞΞ, ΣΣ
and ΣΞ interactions.

In MQMC-I, the Σ hyperons do not appear at all and the Λ hyperons have a substantial
contribution at low densities for medium strangeness fractions fS = 0.5 − 1.8. However
this contribution drops quickly and saturates for ρB/ρ0 ≥ 1 at a constant fraction density
slightly larger than 20%. This model produces smooth binding energy curves over the entire
range of fS and ρB and forms (meta-)stable strange hadronic matter in the bulk.

Due to the exceptionally strong attractive interactions among the Σ and Ξ hyperons in
MQMC-II, the NΛΞ- and NΞ-dominated strange hadronic matter that exists for fS ≤ 1.3 is
replaced by NΣΞ-dominated matter for fS ≥ 1.3, with binding energies per baryon reaching
as much as 56 MeV for fS = 1.5. The equation of state becomes much softer and seems to
allow deeply bound hyperonic matter. The system built out of NΣΞ forms a particularly
(meta-)stable state of strange hadronic matter in the bulk. When the first order phase
transition takes place above some critical baryon density and strangeness fraction, the Σ
hyperons appear and their contribution saturates rapidly to a constant fraction density that
takes its maximum value of about 50% at fS = 1.5. It is expected that such a phase
transition may drastically change the global features of neutron stars [36].

Our results for MQMC-II are qualitatively similar to those of Schaffner-Bielich and Gal
[24] where the same Y Y potentials of MQMC-II (what they call Model N) are employed
within RMF theory but with only hadronic degrees of freedom. There are however some
important quantitative differences. Whereas in Ref. [24] it is found that the second energy
minimum, corresponding to NΣΞ dominated matter, becomes more stable than the first
minimum for fS ≥ 1, our current results indicate that this takes place at higher strangeness
fractions fS ≥ 1.3. Furthermore, the binding energy well for the NΣΞ system has a maxi-
mum depth of 56 MeV in the present work while Ref. [24] finds the largest depth to be 78
MeV. In both calculations the largest binding for the NΣΞ system takes place at fS ≈ 1.5.
The fact that the phase transition takes place at larger strangeness fractions may make it
more difficult to observe experimentally, if it occurs at all.

Finally, quark-quark correlations and excluded volume effects may become important
at high baryon densities in particular when the bags start to overlap at baryon densities
ρB = 2 − 3ρ0. We shall consider these effects on the properties of strange hadronic matter
in our future work.
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TABLES

TABLE I. Fitting parameters

Fit set gqσ gqω g
bag
Nσ g

bag
Λσ g

bag
Λσ∗ g

bag
Σσ g

bag
Σσ∗ g

bag
Ξσ g

bag
Ξσ∗

MQMC-I 1.0 2.705 6.81 4.22 5.45 1.63 7.26 2.27 9.12

MQMC-II 1.0 2.705 6.81 4.22 0.0 1.63 10.28 2.27 10.17
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MQMC-I and II as discussed in the text.
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FIG. 2. The effective mass vs baryon density in MQMC-I for the N,Λ,Σ,Ξ baryons.
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FIG. 3. The effective mass vs baryon density in MQMC-II for the N,Λ,Σ,Ξ baryons.
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FIG. 4. The bag radius vs baryon density in MQMC-I for the N,Λ,Σ,Ξ baryons.
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FIG. 5. The bag radius vs baryon density in MQMC-II for the N,Λ,Σ,Ξ baryons.
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strangeness fractions. (a) N , (b) Λ, (c) Σ and (d) Ξ.

22



(a) (b)

(c) (d)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

B (fm-3)

0.8

0.85

0.9

0.95

1.0

1.05

1.1

1.15

1.2

1.25

1.3

N
/

N
* (0

)

1.8
1.6
1.5
1.4
1.0
0.5

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

B (fm-3)

0.8

0.85

0.9

0.95

1.0

1.05

1.1

1.15

1.2

1.25

1.3

/
* (0

)

1.8
1.6
1.5
1.4
1.0
0.5

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

B (fm-3)

0.8

0.85

0.9

0.95

1.0

1.05

1.1

1.15

1.2

1.25

1.3

/
* (0

)

1.8
1.6
1.5
1.4
1.0
0.5

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

B (fm-3)

0.8

0.85

0.9

0.95

1.0

1.05

1.1

1.15

1.2

1.25

1.3

/
* (0

)

1.8
1.6
1.5
1.4
1.0
0.5
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FIG. 11. The threshold production ratio µi/ǫ
∗

i (kF = 0) for each baryon species and for different

strangeness fractions in MQMC-II. (a) N , (b) Λ, (c) Σ and (d) Ξ.
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FIG. 12. Pressure of strange hadronic matter vs baryon density for different strangeness frac-

tions in (a) MQMC-I and (b) MQMC-II.
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