2,214 research outputs found

    Electroexcitation of the Roper resonance from CLAS data

    Full text link
    The helicity amplitudes of the electroexcitation of the Roper resonance on proton are extracted at 1.7 < Q2 < 4.2 GeV2 from recent high precision JLab-CLAS cross sections data and longitudinally polarized beam asymmetry for pi+ electroproduction on protons. The analysis is made using two approaches, dispersion relations and unitary isobar model, which give consistent results. It is found that the transverse helicity amplitude for the gamma* p --> P11(1440) transition, which is large and negative at Q2=0, becomes large and positive at Q2 ~ 2 GeV2, and then drops slowly with Q2. Longitudinal helicity amplitude, that was previously found from CLAS data as large and positive at Q2=0.4,0.65 GeV2, drops with Q2. These results rule out the presentation of P11(1440) as a 3qG hybrid state, and provide strong evidence in favor of this resonance as a first radial excitation of the 3q ground state.Comment: 3 pages, 2 figures, Talk on the Workshop on "The Physics of Excited Nucleons", Bonn, Germany, October 200

    Baryon Resonance Analysis from SAID

    Full text link
    We discuss the analysis of data from piN elastic scattering and single pion photo- and electroproduction. The main focus is a study of low-lying non-strange baryon resonances. Here we concentrate on some difficulties associated with resonance identification, in particular the Roper and higher P11 states.Comment: 4 pages, 6 figures; Nstar2009 Conf Proceedings; small revisio

    Updated resonance photo-decay amplitudes to 2 GeV

    Get PDF
    We present the results of an energy-dependent and set of single-energy partial-wave analyses of single-pion photoproduction data. These analyses extend from threshold to 2 GeV in the laboratory photon energy, and update our previous analyses to 1.8 GeV. Photo-decay amplitudes are extracted for the baryon resonances within this energy range. We consider two photoproduction sum rules and the contributions of two additional resonance candidates found in our most recent analysis of πN\pi N elastic scattering data. Comparisons are made with previous analyses.Comment: Revtex, 26 pages, 3 figures. Postscript figures available from ftp://clsaid.phys.vt.edu/pub/pr or indirectly from http://clsaid.phys.vt.edu/~CAPS

    Phases of a conserved mass model of aggregation with fragmentation at fixed sites

    Full text link
    To study the effect of quenched disorder in a class of reaction-diffusion systems, we introduce a conserved mass model of diffusion and aggregation in which the mass moves as a whole to a nearest neighbour on most sites while it fragments off as a single monomer (i.e. chips off) from certain fixed sites. Once the mass leaves any site, it coalesces with the mass present on its neighbour. We study in detail the effect of a \emph{single} chipping site on the steady state in arbitrary dimensions, with and without bias. In the thermodynamic limit, the system can exist in one of the following phases -- (a) Pinned Aggregate (PA) phase in which an infinite aggregate (with mass proportional to the volume of the system) appears with probability one at the chipping site but not in the bulk. (b) Unpinned Aggregate (UA) phase in which \emph{both} the chipping site and the bulk can support an infinite aggregate simultaneously. (c) Non Aggregate (NA) phase in which there is no infinite cluster. Our analytical and numerical studies show that the system exists in the UA phase in all cases except in 1d with bias. In the latter case, there is a phase transition from the NA phase to the PA phase as density is increased. A variant of the above aggregation model is also considered in which total particle number is conserved and chipping occurs at a fixed site, but the particles do not interact with each other at other sites. This model is solved exactly by mapping it to a Zero Range Process. With increasing density, it exhibits a phase transition from the NA phase to the PA phase in all dimensions, irrespective of bias. Finally, we discuss the likely behaviour of the system in the presence of extensive disorder.Comment: RevTex, 19 pages including 11 figures, submitted to Phys. Rev.

    Sympathetic Cooling with Two Atomic Species in an Optical Trap

    Get PDF
    We simultaneously trap ultracold lithium and cesium atoms in an optical dipole trap formed by the focus of a CO2_2 laser and study the exchange of thermal energy between the gases. The cesium gas, which is optically cooled to 20μ20 \muK, efficiently decreases the temperature of the lithium gas through sympathetic cooling. The measured cross section for thermalizing 133^{133}Cs-7^7Li collisions is 8×10128 \times 10^{-12} cm2^2, for both species in their lowest hyperfine ground state. Besides thermalization, we observe evaporation of lithium purely through elastic cesium-lithium collisions (sympathetic evaporation).Comment: 4 pages 3 fig

    A quark model framework for the study of nuclear medium effects

    Full text link
    A quark-model framework for studying nuclear medium effects on nucleon resonances is described and applied here to pion photoproduction on the deuteron, which is the simplest composite nucleon system and serves as a first test case. Pion photoproduction on nuclei is discussed within a chiral constituent quark model in which the quark degrees of freedom are explicitly introduced through an effective chiral Lagrangian for the quark-pseudoscalar-meson coupling. The advantage of this model is that a complete set of nucleon resonances can be systematically included with a limited number of parameters. Also, the systematic description of the nucleon and its resonances at quark level allows us to self-consistently relate the nuclear medium's influence on the baryon properties to the intrinsic dynamic aspects of the baryons. As the simplest composite nucleus, the deuteron represents the first application of this effective theory for meson photoproduction on light nuclei. The influence of the medium on the transition operators for a free nucleon is investigated in the Delta resonance region. No evidence is found for a change of the Delta properties in the pion photoproduction reaction on the deuteron since the nuclear medium here involves just one other nucleon and the low binding energy implies low nuclear density. However, we show that the reaction mechanism is in principle sensitive to changes of Delta properties that would be produced by the denser nuclear medium of heavier nuclei through the modification of the quark model parameters.Comment: Revtex, 8 pages, 4 figure

    Proton polarizability contribution to the hydrogen hyperfine splitting

    Get PDF
    The contribution of the proton polarizability to the hydrogen hyperfine splitting is evaluated on the basis of modern experimental and theoretical results on the proton polarized structure functions. The value of this correction is equal to 1.4 ppm.Comment: 11 pages, LaTeX2.09, 7 figures, uses linedraw.sty, psfig.sty, epsf.st

    Yang-Lee Zeros of the Q-state Potts Model on Recursive Lattices

    Full text link
    The Yang-Lee zeros of the Q-state Potts model on recursive lattices are studied for non-integer values of Q. Considering 1D lattice as a Bethe lattice with coordination number equal to two, the location of Yang-Lee zeros of 1D ferromagnetic and antiferromagnetic Potts models is completely analyzed in terms of neutral periodical points. Three different regimes for Yang-Lee zeros are found for Q>1 and 0<Q<1. An exact analytical formula for the equation of phase transition points is derived for the 1D case. It is shown that Yang-Lee zeros of the Q-state Potts model on a Bethe lattice are located on arcs of circles with the radius depending on Q and temperature for Q>1. Complex magnetic field metastability regions are studied for the Q>1 and 0<Q<1 cases. The Yang-Lee edge singularity exponents are calculated for both 1D and Bethe lattice Potts models. The dynamics of metastability regions for different values of Q is studied numerically.Comment: 15 pages, 6 figures, with correction

    Constructing Hybrid Baryons with Flux Tubes

    Get PDF
    Hybrid baryon states are described in quark potential models as having explicit excitation of the gluon degrees of freedom. Such states are described in a model motivated by the strong coupling limit of Hamiltonian lattice gauge theory, where three flux tubes meeting at a junction play the role of the glue. The adiabatic approximation for the quark motion is used, and the flux tubes and junction are modeled by beads which are attracted to each other and the quarks by a linear potential, and vibrate in various string modes. Quantum numbers and estimates of the energies of the lightest hybrid baryons are provided.Comment: 4 pages, RevTeX. Submitted to Physical Review Letter
    corecore