11,595 research outputs found

    Phase resetting reveals network dynamics underlying a bacterial cell cycle

    Get PDF
    Genomic and proteomic methods yield networks of biological regulatory interactions but do not provide direct insight into how those interactions are organized into functional modules, or how information flows from one module to another. In this work we introduce an approach that provides this complementary information and apply it to the bacterium Caulobacter crescentus, a paradigm for cell-cycle control. Operationally, we use an inducible promoter to express the essential transcriptional regulatory gene ctrA in a periodic, pulsed fashion. This chemical perturbation causes the population of cells to divide synchronously, and we use the resulting advance or delay of the division times of single cells to construct a phase resetting curve. We find that delay is strongly favored over advance. This finding is surprising since it does not follow from the temporal expression profile of CtrA and, in turn, simulations of existing network models. We propose a phenomenological model that suggests that the cell-cycle network comprises two distinct functional modules that oscillate autonomously and couple in a highly asymmetric fashion. These features collectively provide a new mechanism for tight temporal control of the cell cycle in C. crescentus. We discuss how the procedure can serve as the basis for a general approach for probing network dynamics, which we term chemical perturbation spectroscopy (CPS)

    Quantum state transmission via a spin ladder as a robust data bus

    Full text link
    We explore the physical mechanism to coherently transfer the quantum information of spin by connecting two spins to an isotropic antiferromagnetic spin ladder system as data bus. Due to a large spin gap existing in such a perfect medium, the effective Hamiltonian of the two connected spins can be archived as that of Heisenberg type, which possesses a ground state with maximal entanglement. We show that the effective coupling strength is inversely proportional to the distance of the two spins and thus the quantum information can be transferred between the two spins separated by a longer distance, i.e. the characteristic time of quantum state transferring linearly depends on the distance.Comment: 7 pages, 5 figures, 1 tabl

    A contrast-sensitive reversible visible image watermarking technique

    Get PDF
    A reversible (also called lossless, distortion-free, or invertible) visible watermarking scheme is proposed to satisfy the applications, in which the visible watermark is expected to combat copyright piracy but can be removed to losslessly recover the original image. We transparently reveal the watermark image by overlapping it on a user-specified region of the host image through adaptively adjusting the pixel values beneath the watermark, depending on the human visual system-based scaling factors. In order to achieve reversibility, a reconstruction/ recovery packet, which is utilized to restore the watermarked area, is reversibly inserted into non-visibly-watermarked region. The packet is established according to the difference image between the original image and its approximate version instead of its visibly watermarked version so as to alleviate its overhead. For the generation of the approximation, we develop a simple prediction technique that makes use of the unaltered neighboring pixels as auxiliary information. The recovery packet is uniquely encoded before hiding so that the original watermark pattern can be reconstructed based on the encoded packet. In this way, the image recovery process is carried out without needing the availability of the watermark. In addition, our method adopts data compression for further reduction in the recovery packet size and improvement in embedding capacity. The experimental results demonstrate the superiority of the proposed scheme compared to the existing methods

    Driving Performances Assessment Based on Speed Variation Using Dedicated Route Truck GPS Data

    Get PDF
    It was hypothesized that a driver is not safe when travel speed is too high and also not necessarily safe when travel speed is too low. Based on this hypothesis, this paper studied the risky driving performances by measuring speed variations of a driver’s recurrent trips in two perspectives: 1) driver profiles, which scored the risk on-road driving of each driver and 2) driving patterns, which reflected the risk speed patterns of a type of drivers. The proposed method was tested on a 30-day global positioning system (GPS) dataset, collected from 100 trucks. The study first split the raw dataset into trips and finds the most repeatedly traveled route. Next, the frequency and amplitude of the speed variations from trips of each truck are calculated to establish driver profiles. A risk score is used to rank the truck drivers, i.e., a higher score indicates that the truck driver is more likely to conduct risky driving performances. All trucks are featured in four pre-defined driving patterns according to the different types of speed variations. The geospatial speed distribution of several trucks is manually examined from the raw dataset to verify the results. The contribution lies in providing a method to evaluate a driver’s risk performance through mass truck GPS data. The proposed method would help for monitoring on-road risky driving performances in large fleet management and also providing knowledge about driving styles among drivers which would be beneficial in study driver assistant system

    Local unambiguous discrimination with remaining entanglement

    Full text link
    A bipartite state, which is secretly chosen from a finite set of known entangled pure states, cannot immediately be useful in standard quantum information processing tasks. To effectively make use of the entanglement contained in this unknown state, we introduce a way to locally manipulate the original quantum system: either identify the state successfully or distill some pure entanglement. Remarkably, if many copies are available, we show that any finite set of entangled pure states, whether orthogonal or not, can be locally distinguished in this way, which further implies that pure entanglement can be deterministically extracted from unknown entanglement. These results make it clear why a large class of entangled bipartite quantum operations including unitary operations and measurements that are globally distinguishable can also be locally distinguishable: They can generate pure entanglement consistently. © 2010 The American Physical Society

    Peierls distorted chain as a quantum data bus for quantum state transfer

    Full text link
    We systematically study the transfer of quantum state of electron spin as the flying qubit along a half-filled Peierls distorted tight-binding chain described by the Su-Schrieffer-Heeger (SSH) model, which behaves as a quantum data bus. This enables a novel physical mechanism for quantum communication with always-on interaction: the effective hopping of the spin carrier between sites AA and BB connected to two sites in this SSH chain can be induced by the quasi-excitations of the SSH model. As we prove, it is the Peierls energy gap of the SSH quasi-excitations that plays a crucial role to protect the robustness of the quantum state transfer process. Moreover, our observation also indicates that such a scheme can also be employed to explore the intrinsic property of the quantum system.Comment: 10 pages, 6 figure

    Observation of Ultrahigh Mobility Surface States in a Topological Crystalline Insulator by Infrared Spectroscopy

    Get PDF
    Topological crystalline insulators (TCIs) possess metallic surface states protected by crystalline symmetry, which are a versatile platform for exploring topological phenomena and potential applications. However, progress in this field has been hindered by the challenge to probe optical and transport properties of the surface states owing to the presence of bulk carriers. Here we report infrared (IR) reflectance measurements of a TCI, (001) oriented Pb1xSnxSePb_{1-x}Sn_{x}Se in zero and high magnetic fields. We demonstrate that the far-IR conductivity is unexpectedly dominated by the surface states as a result of their unique band structure and the consequent small IR penetration depth. Moreover, our experiments yield a surface mobility of 40000 cm2/(Vs)cm^{2}/(Vs), which is one of the highest reported values in topological materials, suggesting the viability of surface-dominated conduction in thin TCI crystals. These findings pave the way for exploring many exotic transport and optical phenomena and applications predicted for TCIs

    Quantum correlation in three-qubit Heisenberg model with Dzyaloshinskii-Moriya interaction

    Full text link
    We investigate the pairwise thermal quantum discord in a three-qubit XXZ model with Dzyaloshinskii-Moriya (DM) interaction. We find that the DM interaction can increase quantum discord to a fixed value in the anti- ferromagnetic system, but decreases quantum discord to a minimum first, then increases it to a fixed value in the ferromagnetic system. Abrupt change of quantum discord is observed, which indicates the abrupt change of groundstate. Dynamics of pairwise thermal quantum discord is also considered. We show that thermal discord vanishes in asymptotic limit regardless of its initial values, while thermal entanglement suddenly disappears at finite time.Comment: 6 pages, 6 figure

    Noise bridges dynamical correlation and topology in coupled oscillator networks

    Full text link
    We study the relationship between dynamical properties and interaction patterns in complex oscillator networks in the presence of noise. A striking finding is that noise leads to a general, one-to-one correspondence between the dynamical correlation and the connections among oscillators for a variety of node dynamics and network structures. The universal finding enables an accurate prediction of the full network topology based solely on measuring the dynamical correlation. The power of the method for network inference is demonstrated by the high success rate in identifying links for distinct dynamics on both model and real-life networks. The method can have potential applications in various fields due to its generality, high accuracy and efficiency.Comment: 2 figures, 2 tables. Accepted by Physical Review Letter
    corecore