435 research outputs found

    Vascular Endothelial Growth Factor-Delivery Systems for Cardiac Repair: An Overview

    Get PDF
    Since the discovery of the Vascular Endothelial Growth Factor (VEGF) and its leading role in the angiogenic process, this has been seen as a promising molecule for promoting neovascularization in the infarcted heart. However, even though several clinical trials were initiated, no therapeutic effects were observed, due in part to the short half life of this factor when administered directly to the tissue. In this context, drug delivery systems appear to offer a promising strategy to overcome limitations in clinical trials of VEGF

    Adipose-derived stem cells combined with Neuregulin-1 delivery systems for heart tissue engineering

    Get PDF
    Myocardial infarction (MI) is the leading cause of death worldwide and extensive research has therefore been performed to find a cure. Neuregulin-1 (NRG) is a growth factor involved in cardiac repair after MI. We previously described how biocompatible and biodegradable microparticles, which are able to release NRG in a sustained manner, represent a valuable approach to avoid problems related to the short half-life after systemic administration of proteins. The effectiveness of this strategy could be improved by combining NRG with several cytokines involved in cardiac regeneration. The present study investigates the potential feasibility of using NRG-releasing particle scaffold combined with adipose derived stem cells (ADSC) as a multiple growth factor delivery-based tissue engineering strategy for implantation in the infarcted myocardium. NRG-releasing particle scaffolds with a suitable size for intramyocardial implantation were prepared by TROMS. Next, ADSC were adhered to particle scaffolds and their potential for heart administration was assessed in a MI rat model. NRG was successfully encapsulated reaching encapsulation efficiencies of 92.58 ± 3.84 %. NRG maintained its biological activity after the microencapsulation process. ADSC cells adhered efficiently to particle scaffolds within a few hours. The ADSC-cytokine delivery system developed proved to be compatible with intramyocardial administration in terms of injectability through a 23-gauge needle and tissue response. Interestingly, ADSC-scaffolds were present in the peri-infarted tissue two weeks after implantation. This proof of concept study provides important evidence required for future effectiveness studies and for the translation of this approach

    c-Jun N-terminal Kinase (JNK) signaling as a therapeutic target for Alzheimer’s disease

    Get PDF
    C-Jun N-terminal (JNKs)are family of protein kinase that play a central role in stress signaling pathways implicated in gener expression, neuronal plasticity, regeneration, cell death, and regulation of dellular senescence. It has been shown that there is a JNK pathways activation after exposure to different stressing factors, including cytokines, growth factors, oxidative stress, unfolded protein responde signals or Aβ peptides. Altogether, JNKs have become a focus os creening strategies searching for new therapeutic approaches to diabetes, cancer or live diseases. In addition, activation of JNK has been identified as a key element responsable for the regulation os apoptosis signals and therefore, it is critical for pathological cell death associated with neurodegenerative diseases and, among them, with Alzheimer's disease (AD). In addition, in vitro and in vivo studiesb have reported alterations of JNK pathways potentially associated with pathogenesis and neuronal death in AD. JNK's, particulary JNK3, not only enhace Aβ production, moreover it plays a key role in the maduration and development of neurofibrillary tangles. This review aims to explains the rationale behind testing therapies based on inhibition of JNK signaling for AD in terms of current knowledge about the pathophysiology of the disease. Keeping in mind that JNK3 is specifically expressed in the brain and activated by stress-stimuli, it is possible to hypothesize that inhibition of JNK3 might be considered as a potential target for treating neurodegenerative mechanisms associated with AD

    Injectable alginate hydrogel loaded with GDNF promotes functional recovery in a hemisection model of spinal cord injury

    Get PDF
    We hypothesized that local delivery of GDNF in spinal cord lesion via an injectable alginate hydrogel gelifying in situ would support spinal cord plasticity and functional recovery. The GDNF release from the hydrogel was slowed by GDNF encapsulation in microspheres compared to non-formulated GDNF (free GDNF). When injected in a rat spinal cord hemisection model, more neurofilaments were observed in the lesion when the rats were treated with free GDNF-loaded hydrogels. More growing neurites were detected in the tissues surrounding the lesion when the animals were treated with GDNF microsphere-loaded hydrogels. Intense GFAP (astrocytes), low III tubulin (neural cells) and RECA-1 (endothelial cells) stainings were observed for non-treated lesions while GDNF-treated spinal cords presented less GFAP staining and more endothelial and nerve fiber infiltration in the lesion site. The animals treated with free GDNF-loaded hydrogel presented superior functional recovery compared with the animals treated with the GDNF microsphere-loaded hydrogels and non-treated animals

    Comparison of physical fitness between healthy and mild‐to‐moderate asthmatic children with exercise symptoms: A cross‐sectional study

    Get PDF
    .Objective Asthma is a chronic disease that may affect physical fitness, although its primary effects on exercise capacity, muscle strength, functionality and lifestyle, in children and adolescents, are still poorly understood. This study aimed to evaluate the differences in cardiorespiratory fitness, muscle strength, lifestyle, lung function, and functionality between asthmatics with exercise symptoms and healthy children. In addition, we have analyzed the association between clinical history and the presence of asthma. Study Design Cross-sectional study including 71 patients with a diagnosis of asthma and 71 healthy children and adolescents (7–17 years of age). Anthropometric data, clinical history, disease control, lifestyle (KIDMED and physical activity questionnaires), lung function (spirometry), exercise-induced bronchoconstriction test, aerobic fitness (cardiopulmonary exercise test), muscle strength and functionality (timed up and go; timed up and down stairs) were evaluated. Results Seventy-one patients with asthma (mean age 11.5 ± 2.7) and 71 healthy subjects (mean age 10.7 ± 2.5) were included. All asthmatic children had mild to moderate and stable asthma. EIB occurred in 56.3% of asthmatic children. Lung function was significantly (p < .05) lower in the asthmatic group when compared to healthy peers, as well as the cardiorespiratory fitness, muscle strength, lifestyle and functionality. Moreover, asthmatic children were more likely to have atopic dermatitis, allergic reactions, food allergies, and a family history of asthma when compared to healthy children. Conclusions Children with mild-to-moderate asthma presenting exercise symptoms show a reduction in cardiorespiratory fitness, muscle strength, lung function, functionality, and lifestyle when compared to healthy peers. The study provides data for pediatricians to support exercise practice aiming to improve prognosis and quality of life in asthmatic children.S

    Sustained release of VEGF through PLGA microparticles improves vasculogenesis and tissue remodeling in an acute myocardial ischemia–reperfusion model

    Get PDF
    The use of pro-angiogenic growth factors in ischemia models has been associated with limited success in the clinical setting, in part owing to the short lived effect of the injected cytokine. The use of a microparticle system could allow localized and sustained cytokine release and consequently a prolonged biological effect with induction of tissue revascularization. To assess the potential of VEGF165 administered as continuous release in ischemic disease, we compared the effect of delivery of poly(lactic–co-glycolic acid) (PLGA) microparticles (MP) loaded with VEGF165 with free-VEGF or control empty microparticles in a rat model of ischemia–reperfusion. VEGF165 loaded microparticles could be detected in the myocardium of the infarcted animals for more than a month after transplant and provided sustained delivery of active protein in vitro and in vivo. One month after treatment, an increase in angiogenesis (small caliber caveolin-1 positive vessels) and arteriogenesis (α-SMA-positive vessels) was observed in animals treated with VEGF microparticles (pb0.05), but not in the empty microparticles or free-VEGF groups. Correlating with this data, a positive remodeling of the heart was also detected in the VEGF-microparticle group with a significantly greater LV wall thickness (pb0.01). In conclusion, PLGA microparticle is a feasible and promising cytokine delivery system for treatment of myocardial ischemia. This strategy could be scaled up and explored in pre-clinical and clinical studies

    PEGylated-PLGA microparticles containing VEGF for long term drug delivery

    Get PDF
    The potential of poly(lactic-co-glycolic) acid (PLGA) microparticles as carriers for vascular endothelial growth factor (VEGF) has been demonstrated in a previous study by our group, where we found improved angiogenesis and heart remodeling in a rat myocardial infarction model (Formiga et al., 2010). However, the observed accumulation of macrophages around the injection site suggested that the efficacy of treatment could be reduced due to particle phagocytosis. The aim of the present study was to decrease particle phagocytosis and consequently improve protein delivery using stealth technology. PEGylated microparticles were prepared by the double emulsion solvent evaporation method using TROMS (Total Recirculation One Machine System). Before the uptake studies in monocyte-macrophage cells lines (J774 and Raw 264.7), the characterization of the microparticles developed was carried out in terms of particle size, encapsulation efficiency, protein stability, residual poly(vinyl alcohol) (PVA) and in vitro release. Microparticles of suitable size for intramyocardial injection (5 mu m) were obtained by TROMS by varying the composition of the formulation and TROMS conditions with high encapsulation efficiency (70-90%) and minimal residual PVA content (0.5%). Importantly, the bioactivity of the protein was fully preserved. Moreover, PEGylated microparticles released in phosphate buffer 50% of the entrapped protein within 4 h, reaching a plateau within the first day of the in vitro study. Finally, the use of PLGA microparticles coated with PEG resulted in significantly decreased uptake of the carriers by macrophages, compared with non PEGylated microparticles, as shown by flow cytometry and fluorescence microscopy. On the basis of these results, we concluded that PEGylated microparticles loaded with VEGF could be used for delivering growth factors in the myocardium

    A fresh look at the evolution and diversification of photochemical reaction centers

    Get PDF
    In this review, I reexamine the origin and diversification of photochemical reaction centers based on the known phylogenetic relations of the core subunits, and with the aid of sequence and structural alignments. I show, for example, that the protein folds at the C-terminus of the D1 and D2 subunits of Photosystem II, which are essential for the coordination of the water-oxidizing complex, were already in place in the most ancestral Type II reaction center subunit. I then evaluate the evolution of reaction centers in the context of the rise and expansion of the different groups of bacteria based on recent large-scale phylogenetic analyses. I find that the Heliobacteriaceae family of Firmicutes appears to be the earliest branching of the known groups of phototrophic bacteria; however, the origin of photochemical reaction centers and chlorophyll synthesis cannot be placed in this group. Moreover, it becomes evident that the Acidobacteria and the Proteobacteria shared a more recent common phototrophic ancestor, and this is also likely for the Chloroflexi and the Cyanobacteria. Finally, I argue that the discrepancies among the phylogenies of the reaction center proteins, chlorophyll synthesis enzymes, and the species tree of bacteria are best explained if both types of photochemical reaction centers evolved before the diversification of the known phyla of phototrophic bacteria. The primordial phototrophic ancestor must have had both Type I and Type II reaction centers
    corecore