5,258 research outputs found

    A climatically-derived global soil moisture data set for use in the GLAS atmospheric circulation model seasonal cycle experiment

    Get PDF
    Algorithms for point interpolation and contouring on the surface of the sphere and in Cartesian two-space are developed from Shepard's (1968) well-known, local search method. These mapping procedures then are used to investigate the errors which appear on small-scale climate maps as a result of the all-too-common practice of of interpolating, from irregularly spaced data points to the nodes of a regular lattice, and contouring Cartesian two-space. Using mean annual air temperatures field over the western half of the northern hemisphere is estimated both on the sphere, assumed to be correct, and in Cartesian two-space. When the spherically- and Cartesian-approximted air temperature fields are mapped and compared, the magnitudes (as large as 5 C to 10 C) and distribution of the errors associated with the latter approach become apparent

    The clubhead and hand planes in golf draw and fade shots.

    Get PDF
    Swing planes in golf have become a popular area of research. Cochran and Stobbs (1968) examined the motion of the clubhead and hands qualitatively. Subsequent quantitative analyses have included investigations of the planarity of the whole club (Coleman & Anderson, 2007) and clubhead (Shin, Casebolt, Lambert, Kim, & Kwon, 2008). The aim of this study was to investigate the motion of the clubhead and hands in the downswing quantitatively, and to compare these motions for the fade and draw (as suggested by Coleman and Anderson, 2007). In conclusion, both the clubhead and hand planes in the late downswing were found to differ significantly in relation to the target line between the draw and fade shots. Greater differences were found between golfers, rather than between shots, in the relationship between the clubhead and hand motion during the downswing. Nevertheless, further detailed analysis is warranted of how the motions around impact – especially the clubface orientation – differ between the two types of shot

    The clubhead swing plane in golf draw and fade shots

    Get PDF
    It has become popular to characterise a golf shot in terms of a ‘swing plane’. However Coleman and Anderson (2007) showed that the motion of the whole club in the downswing could not be represented by a single plane in all players. Shin et al. (2008) found that the clubhead motion was consistently planar between the club being horizontal in the downswing and follow-through. Coleman and Anderson (2007) also suggested that the club plane might differ between draw and fade shots. The purpose of this study was to compare draw and fade shots, with a focus on the clubhead motion in the late downswing. The late downswing clubhead plane differs between a draw and a fade shot, even when differences in address angles are accounted for

    Measurement of Newtonian fluid slip using a torsional ultrasonic oscillator

    Full text link
    The composite torsional ultrasonic oscillator, a versatile experimental system, can be used to investigate slip of Newtonian fluid at a smooth surface. A rigorous analysis of slip-dependent damping for the oscillator is presented. Initially, the phenomenon of finite surface slip and the slip length are considered for a half-space of Newtonian fluid in contact with a smooth, oscillating solid surface. Definitions are revisited and clarified in light of inconsistencies in the literature. We point out that, in general oscillating flows, Navier's slip length b is a complex number. An intuitive velocity discontinuity parameter of unrestricted phase is used to describe the effect of slip on measurement of viscous shear damping. The analysis is applied to the composite oscillator and preliminary experimental work for a 40 kHz oscillator is presented. The Non-Slip Boundary Condition (NSBC) has been verified for a hydrophobic surface in water to within ~60 nm of |b|=0 nm. Experiments were carried out at shear rate amplitudes between 230 and 6800 /s, corresponding to linear displacement amplitudes between 3.2 and 96 nm.Comment: Revised with minor edits for revie

    On geostrophic adjustment of a two-layer, uniformly rotating fluid in the presence of a step escarpment

    Get PDF
    This paper addresses the Rossby adjustment problem for an inviscid uniformly rotating two-layer fluid in the presence of a step escarpment of infinite length. The problem can be solved analytically for the case when the ratio of the step height to the average depth of the lower layer is small. In this case two well-separated adjustment time scales emerge; the rapid, inertial and the slow, topographic vortex-stretching time scales. The fluid is assumed to be at rest initially with imposed step discontinuities in the free surface and interfacial displacements oriented perpendicular to the escarpment. A two time-scale approach shows that during the rapid inertial adjustment the fluid is not influenced by the topography. On the slow vortex-stretching time scale the fluid adjusts via the propagation of topographic Rossby waves, modified by stratification, along the step. A steady state solution is established in which the flow is geostrophically balanced in both layers. Therefore, in this steady state no fluid in the lower layer crosses the escarpment. However, cross-escarpment flow occurs in the upper layer. The volume of fluid in the upper layer that crosses the escarpment, rather than being deflected parallel to the topography, is calculated
    • …
    corecore