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On geostrophic adjustment of a two-layer, uniformly 
rotating fluid in the presence of a step escarpment 

by A. J. Willmottl and E. R. Johnson2 

ABSTRACT 
This paper addresses the Rossby adjustment problem for an inviscid uniformly rotating 

two-layer fluid in the presence of a step escarpment of infinite length. The problem can be 
solved analytically for the case when the ratio of the step height to the average depth of the 
lower layer is small. In this case two well-separated adjustment time scales emerge; the rapid, 
inertial and the slow, topographic vortex-stretching time scales. 

The fluid is assumed to be at rest initially with imposed step discontinuities in the free 
surface and interfacial displacements oriented perpendicular to the escarpment. A two 
time-scale approach shows that during the rapid inertial adjustment the fluid is not influenced 
by the topography. On the slow vortex-stretching time scale the fluid adjusts via the propaga- 
tion of topographic Rossby waves, modified by stratification, along the step. A steady state 
solution is established in which the flow is geostrophically balanced in both layers. Therefore, 
in this steady state no fluid in the lower layer crosses the escarpment. However, cross- 
escarpment flow occurs in the upper layer. The volume of fluid in the upper layer that crosses 
the escarpment, rather than being deflected parallel to the topography, is calculated. 

1. Introduction 

The topology of the density surfaces and the location and strength of currents in 
the ocean will sometimes be a reflection of the contemporaneous forcing of the 
ocean through heating, evaporation, precipitation and wind stress. However during 
periods where forcing is weak the many ocean flows appear to relax to geostrophi- 
tally adjusted states. These adjusted flows are not unique. It was the insight of 
C. G. Rossby that a unique solution could be obtained by considering an initial value 
problem. Rossby’s adjusted solutions have proven invaluable in discussing flows 
observed in the oceans, laboratory and numerical simulations. It is the purpose of the 
present paper to derive similar adjusted solutions incorporating the effects of 
stratification and varying bottom topography. Observations of stratified adjustment 
in the presence of depth variations are still relatively uncommon but a comparison of 
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our results with those available at present are given in a discussion at the end of the 
text. 

The “classical” Rossby adjustment problem for a uniformly rotating homogeneous 
fluid (see Gill et al., 1986, for an excellent review of the problem) has received 
renewed interest with the introduction of topography (Johnson, 1985; Gill et al., 
1986; Johnson and Davey, 1990; Willmott and Grimshaw, 1991; 1992). Topography 
supports topographic Rossby waves, whose phase propagates with shallow water to 
the right (in the Northern Hemisphere). This introduces an asymmetry into the 
evolution of flows above uneven bathymetry. For example, when fluid is forced to 
cross a depth discontinuity it will be diverted in the direction that double Kelvin 
waves propagate (Gill et al, 1986). 

In the ocean, escarpments are not infinitely long and terminate where they meet 
ocean boundaries. When fluid is confined to a semi-infinite domain by a vertical side 
wall with a step escarpment oriented perpendicular to the wall, Gill et al. (1986) 
obtain an analytical solution for the steady adjusted geostrophic flow. Using the same 
geometry, Johnson (1985) analytically solved the full initial value problem for the 
evolution of a flow driven by a source-sink pair located on the wall symmetrically 
about the step. Both Johnson (1985) and Gill et al. (1986) employ the rigid-lid 
approximation, in which case the energy propagation associated with double Kelvin 
waves is unidirectional; there is no reversal of group velocity for short waves. Still 
employing the rigid-lid approximation, Willmott and Grimshaw (1991, 1992) replace 
the step escarpment with a wedge-shaped escarpment, the apex of which lies on the 
vertical wall. Energy can now propagate in either direction along the escarpment via 
topographic Rossby waves. They show that long waves are again responsible for 
establishing the steady geostrophic flow over the wedge-shaped escarpment, when a 
source-sink driven flow of the type described by Johnson (1985) is impulsively 
switched-on and maintained. Further, in the final solution, Willmott and Grimshaw 
(1991) find that the fluid above the escarpment is motionless. The establishment of a 
steady solution in Willmott and Grimshaw (1991, 1992) is only possible because the 
escarpment width is zero at the wall; it takes an infinite time for topographic Rossby 
waves carrying energy toward the wall to reach the apex of the escarpment. In the 
more general case, when the escarpment width is nonzero at the wall, an unsteady 
boundary layer will develop against the wall (Johnson and Davey, 1990). Energy 
carried toward the wall by long waves is in general, reflected as short waves. At large 
times, the flow is dominated by the waves of lowest frequency and the energy 
contained in the reflected waves is increasingly confined in the neighborhood of the 
wall. An analogous process occurs at the western boundary of the inviscid spin-up, in 
terms of linear Rossby waves, of a stratified fluid contained within a meridional 
channel on a local beta-plane (see Anderson and Gill, 1975). Dissipation allows a 
steady boundary layer to develop (Willmott and Johnson, 1979). 

Johnson (1990) presents a method for explicitly obtaining the transmission ampli- 
tudes for Kelvin waves scattered by topography whose isobaths are parallel suffi- 
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ciently far from the vertical, but not necessarily planar, wall supporting the incident 
waves. The work generalizes the results in Johnson (1985), Gill et al. (1986) and 
Johnson and Davey (1990). Johnson (1990) considers the low-frequency limit and 
approximates continuous topography by a stepped feature, consisting of regions of 
constant height separated by vertical profiles. Killworth (1989) presents numerical 
simulations for the transmission of a coastal trapped Kelvin wave across a ridge 
which is perpendicular to the wall supporting the incident wave. However, numerical 
simulations are difficult to carry out, as noted by Killworth (1989) because over the 
downslope the field is dominated by short waves which are difficult to resolve on a 
numerical grid. The scattering of Kelvin waves by continuous, rather than stepped 
topography, is examined by Johnson (1993). In this paper Johnson is able to quantify 
the contribution of the short waves which occur, for example, where downslbpes 
meet the bounding wall and presents a method of choosing the positions of the jumps 
when approximating complex topography. Johnson (1993) also presents an accurate 
estimate for the amplitude of the transmitted Kelvin waves in the problem addressed 
numerically by Killworth (1989). 

Numerical studies of uniformly rotating flow across nonzero width escarpments 
have also been carried out by Wajsowicz (1991) and Allen (1988). Wajsowicz 
addresses the question of how deep water crosses the Greenland-Faeroes-Iceland 
ridge system using a primitive equation numerical model. Allen (1988) considers the 
adjustment of the free surface of a uniformly rotating homogeneous fluid in the 
presence of an infinitely long escarpment of nonzero width. After the passage of 
topographic Rossby waves, the fluid above the escarpment is found by Allen (1988) 
to be motionless, which is consistent with the conclusions of Willmott and Grimshaw 
(1991,1992). 

Johnson and Davey (1990) remove the restriction of the rigid-lid and consider the 
transient development to the steady flows described by Gill et al. (1986). For 
topography of small fractional height, two distinct time scales emerge. A fast time 
scale describing the adjustment to geostrophy of the initial unbalanced surface 
displacement and a slow, vortex-stretching time scale describing the subsequent 
evolution of the geostrophic state. 

Apart from the studies of Allen (1988) and Wajsowicz (1991) all the above studies 
consider a homogeneous fluid. As a first step toward understanding the effects of 
stratification in the geostrophic adjustment problem with topography, this paper 
considers a 2-layer fluid with an infinitely long escarpment of small fractional depth, 
contained entirely within the lower layer. In this system two time scales emerge; a 
slow topographic (vortex stretching) time scale and the initial fast Poincare and 
Kelvin wave time scale (Johnson and Davey, 1990). On the slow time scale, the fluid 
is brought to a steady geostrophic state after the passage of topographic Rossby 
wave, modified by stratification, along the step. Willmott and Johnson (1989) study 
the analogue of this wave in a uniformly rotating two-layer fluid contained within a 
circular basin with a step shelf. 
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Section 2 defines the problem and presents the solution, on the fast inertial time 
scale, of the initial unbalanced interfacial displacements to a state of geostrophy. 
During this rapid evolution the topography plays no role in the dynamics. However, 
on the slow vortex-stretching time scale the subsequent evolution to a steady state is 
achieved by the propagation of topographic Rossby waves, and this is described in 
Section 3. Final steady geostrophically adjusted solutions and solutions during the 
‘slow’ adjustment phase are presented in Section 4. Finally, the results are discussed 
briefly in Section 5. 

2. Statement of the problem and governing equations 

Consider a uniformly rotating, inviscid, incompressible, two-layer fluid in which pi* 
and p2 are the uniform upper and lower layer densities respectively and Hi is the 
depth of the undisturbed upper layer. With respect to a right-handed Cartesian 
coordinate frame Ox*y*z* an infinitely long step escarpment contained entirely 
within the lower layer lies along thex*-axis (Fig. 1). The rigid lower boundary is given 
byz* = h,h(y) where h is order one. In this study h = sgny and ho = 6H-/2, where 
H- is the total fluid depth in the region y < 0 and 6 K 1. In y > 0 the total fluid 
depth H+ = (1 - 6)H- and the average depth, HO, of the fluid is given by HO = 
(H- + H+)/2. 

Topographic compression of vortex filaments generates vorticity of order e f where 
E = 6H-/(HO - HI) GZ 1 and f /2 is the constant angular speed of rotation of the 
fluid about a vertical axis (Johnson, 1984). The constraint on E requires that the 
upper layer depth is thin, which is appropriate for oceanographic applications of this 
problem. Following Johnson and Davey (1990) the topographic vortex stretching 
time scale T = (c f )-’ is therefore long compared to the inertial time f -l. 

The external Rossby radius of deformation associated with a fluid of depth HO is 
given by r, = (gHo)1/2f -l where g is gravitational acceleration. Let q. be a surface 
displacement scale and U = gqol(ff,) b e a velocity scale. With length scale r,, and 
time scale f -l and velocity scale U the nondimensional linear shallow water equa- 
tions for a two-layer fluid become 

ull + k A u1 = -Vq 1, (2-l) 

(Sl - q2)t + 2 v.4 = 0, i i (2.2) 

u2t + k A u2 = -V”rli - AVq2, (2.3) 

(2.4) 

where 

A = (P2 - P&P27 
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Figure 1. The geometry of the uniformly rotating two layer-fluid above an infinitely long step 
escarpment of height Zzs located at y * = 0. Initially the fluid is at rest with average fluid 
depth in y * > 0 equal to H+ and in y* < 0, H-. The undisturbed upper layer depth is Ht. 
Initially at least one interface has a step discontinuity alongx* = 0 (i.e. perpendicular to the 
escarpment). In the example shown in the sketch, the initial free surface qi = no sgn (x) and 
the initial interfacial displacement qz = TOA-l sgn (x). 

is the stratification parameter, ui = (ui, v,) is the horizontal velocity in the ith layer 
(with i = 1 denoting the upper layer), HZ = Ha - Hi is the average depth of the lower 
layer and k is a unit vector along the Oz direction. Since the upper layer depth is 
‘thin’ (HZ/Ho) is an order one quantity. The upper and lower layer vorticity 
equations, formed from (2.1) and (2.3) respectively, are given by 

Ho 
vlx - Uly + q (112 - rll) 1 = 0, f (2.5a) 

(2.5b) 

Initially the fluid is at rest and at least one interface has a step discontinuity along 
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x = 0 (i.e. perpendicular to the step topography). Therefore 

where yi take the values 0, ~tl. When yi = 0, the ith interface is initially flat. The 
classical Rossby adjustment problem takes place on the fast time scale t. Internal- 
inertial waves and external Poincart waves play a role on the fast adjustment to 
geostrophy followed by a slow evolution on the time-scale T controlled by topo- 
graphic Rossby waves. 

a. The rapid inertial adjustment. The vorticity equations (2.5) in the limit E + 0 with t 
fixed are integrated with respect to time to yield 

V’Lr - Uly + (w-l - rd w  (4, (2.7a) 

vti-.2y-($)q2=-($)y2A-1sgn(x), 

after application of (2.6). As noted by Johnson and Davey (1990) the effects of 
topography vanish in this limit. Steady geostrophic y-independent solutions of (2.7) 
exist in which 

with 

(2.8a) 

qtnr + ($) h2 - m) = ($) b2A-l - rJ sgn (4 (2.8b) 

&x-($2-~) (112 - rid = - 2~~A-l w (4 
(2.k) 

- 2 (we1 - rd w (4. 

The solution of (2.8b,c) is readily obtained using modal variables q(“)(n = 1,2) 
where 

q(n) = q1 + q(“)q2, (2.9a) 

and q@) are modal coefficients which satisfy 

with the positive root defined as q cl). In terms of q(“) (2.8b,c) can be expressed in the 



19951 Willmott & Johnson: Geostrophic adjustment of two-layer fluid 55 

decoupled form 

1 2 qg - - q(“) = - i 1 (r~ + d%A-‘) 
r(n) [#)I2 w (4, 

where the separation constant r@) is given by 

(2.10a) 

(2.1Ob) 

It follows from (2.10) that the steady bounded geostrophically adjusted flow, in the 
limit t -+ 03, is given by 

q1 = y1 sgn (x) + L [q(2)Are-klir”’ 
4 

- q(1)Ag-~lir(2)] sgn (x), (2.11a) 

q2 = y2A-’ sgn (x) + & [FI&P~“‘~’ - Are-~@] sgn (x), (2.11b) 

where 

and 

Al = -y1 - y&‘@) 7 A2 = -yl - Y~A-‘~(~), 

Aq = q(2) - q(l). 

The solution (2.11) describes geostrophic jets in each layer which are symmetric 
about x = 0 (the location of the initial interfacial discontinuities) and hence 
perpendicular to the step. Steady geostrophic flow cannot cross isobaths. On the 
longer vortex-stretching time scale (2.11) will adjust via the propagation of topo- 
graphic Rossby waves, to a steady state which is compatible with the topography. 

3. Slow, topographic adjustment 

Consider (2.1) to (2.4) in the limit E + 0 on the topographic vortex stretching time 
scale 7 = et fixed. Then (2.1) and (2.3) reduce to the geostrophic balance equations 

k A u1 = -Vq,, (3.la) 

k A u2 = -Vqt - AVq2, (3.lb) 

while (2.5a) and (2.5b) become 

V2”rl17 + 2 i 1 1 (rl2 - r11)7 = 0 

V2(“rll + h2)7 - 2 9127 + J(n + Aq2, h) = 0, (3.2b) 
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dispersion curve 
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k axis 

Figure 2. Plot of the dispersion relation (3.13b) for topographic Rossby waves, modified by 
stratification, which are trapped over the step escarpment. The waves are more frequently 
called internal double Kelvin waves. Parameter values used are given in Appendix B. 

where J denotes the Jacobian operator. The adjusted solutions (2.11) are the initial 
conditions for (3.2). Let q&) and q&) denote the adjusted solutions for ql and q2 
respectively given by (2.11), and $j = qj - qja denote the deviation from the initial 
geostrophically adjusted elevations, wherej = 1, 2. In terms of +j the topographic 
adjustment problem becomes 

(3.3a) 

V2(% + W2h - 2 h + J(h + A+,> h) = -J(no + hzo, h), (3.3b) 
2 

with 

IJJ~ = 0 = \c12 at t = 0. (3.4) 

In (3.3) and (3.4) and the remainder of this section the topographic time scale 7 has 
been replaced by t for notational convenience. Matching conditions across the step 
are 

bhl = 0 = bhl on Y = 0, (3.5) 

[*lytl = 0 on Y = 0, (3.6) 

44~2~tl + (4~1 + W&h1 = -vb[hl, (3.7) 
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inertial adjustment 
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x axis 

fin al interfaces 
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Figure 3. (a) Free surface (qt) and interfacial (q2) displacements over the step (i.e. along 
y = 0) following the rapid inertial adjustment from the initial state qr = sgn (x), q2 = 0; (b) 
Final steady free surface and interfacial displacements over the step which are established 
after the passage of internal double Kelvin waves. 

where 

VOW = (mo + h2oL 

is the initial cross-step flow and [s] denotes the jump in the enclosed quantity across 
the step. Matching conditions (3.5) express continuity of pressure across the step. 
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-3 -2 -1 0 1 2 3 

x-axis 
Figure 4. Contour plots of (a) final steady free surface displacement, ql, which is the upper 

layer streamfunction; (b) final steady interfacial displacement -qz; (c) the lower layer 
streamfunction q, + Aqz in the steady state. In (a) and (c) the evenly spaced contour 
increment is 0.1, with the exception of contour level 0.95. 

15371 

( ) a 

Matching conditions (3.6) and (3.7) are obtained by integrating (3.2a) and (3.2b) 
with respect to y over the interval [-•E, E] followed by taking the limit as E + 0, 
respectively. In physical terms (3.6) and (3.7) express continuity of cross-step 
transport in each layer. From (3.6) it is also clear that only one family of subinertial 
waves contributes to the topographic adjustment, namely topographic Rossby waves 
modified by stratification (Rhines, 1977; Willmott, 1984; Willmott and Johnson, 
1989). 
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final r/2 
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Figure 4. (Continued) 

Integrating (3.3) and (3.6) with respect to time and employing (3.5) yields 

v2*1 + 2 c*2 - *1> = 0, 
1 

V2& + NJ,) - 2 $2 = 0, 
2 

with 

NJly 1 = 0, ony = 0, (3.9) 
MIJ~,I + Wh + 4~2>, = -bl/,, ony = 0, (3.10) 

(3.8a) 

(3.8b) 
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Figure 4. (Continued) 

for the step escarpment h(y) = s sgn (y), where s = -+ 1. The solution of (3.8) subject 
to (3.5) (3.9) and (3.10) is readily obtained using the modal variable approach in 
Section 2. In terms of the modal variables +@) = +i + q(“$ (n = 1,2), 

,J,l = (Aq)-1[q(2)$(1) - 4(9,(2)], 4~~ = (A&$~I(~) - @I, (3.11) 

where q@) are the roots of the quadratic (2.9b). Let subscripts N and P denote 
variables iny < 0 and y > 0 respectively. Then the solution for the modal variables 
which satisfy the matching conditions (3.5) (3.9) and (3.10) and the initial conditions 
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(3.4) is given by 

m q(l) 
I)$) = & s-, %A(k, t) exp [ikx + K,y]dk, 

m q(2) 
I# = F& J-, K,A(~, t) exp [ikx + Kfl]dk, 

m q(l) 
(J!) = $ J-w %A(k, t) exp [ikx - Kly]dk, 

m q(2) 
I#) = & J-, zA(k, t) exp [ikx - K,y]dk, 

where 

A, - ilR(k)A = i FO, A =Oatt=O, 

with 

ski? 
R(k) = 

tWG& ’ 

61 

(3.12a) 

(3.12b) 

(3.12~) 

(3.12d) 

(3.13a) 

(3.13b) 

I? = K,(l + qc2)) - K,(l + q(l)), 

and 

Kf = k2 + [r”‘]-2, K; = k2 + [r’2’]-2. 

In (3.13a), v, denotes the complex Fourier transforms of I’,,. Clearly a(k) is the 
frequency of the topographic Rossby waves; a plot of the wave dispersion relation 
(3.13b) is shown in Figure 2 using parameter values listed in Appendix B. At long 
wavelengths (i.e. k + 0) the waves are nondispersive, while (3.13b) shows that 
R(k) -+ s as k + 03. It is clear from Figure 2 that the waves propagate energy 
unidirectionally at all wavelengths. 

The solution of (3.13a) is given by 

A(k, t) = &(l - e’&), (3.14) 

where 

In terms of the Fourier transform ?& = (vi0 + A712,J, API can be rewritten as 

&(k) = - tb)K1K2 ijo. 
AI? 
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-3 -2 -1 0 1 2 3 

x axis 

Figure 5. Plot of the free surface and interfacial displacements and ql + A-Q above the step at 
t = 1, 5, 10 and 20, showing how the internal double Kelvin wave establishes the steady 
solutions in Figure 3(b). The plot of ql + Aq2 almost coincides with ql at t = 1, 20 and is 
therefore not labelled. 
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Figure 5. (Continued) 
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Using (3.14) the modal fields (3.12a to d) are therefore determined, and the 
interfacial displacements can be calculated from (3.11). From (2.11) it can be shown 
that 

2Ho To/o= - AH K2K2 

2 1 2 

.v2k2 + g (~1 + 72) . 
1 1 

Evaluation of the Fourier integrals (3.12a to d) requires care and Appendix A 
describes the method adopted. In particular, over the escarpment (y = 0) the steady 
contribution from (3.12a) which emerges as t -+ ~0 is given by 

sin (kx)dk + i&(O)Si(x) - I&, 

(3.16) 

where API(k) = &lk and Si denotes the sine integral. The form (3.16) is suitable for 
numerical evaluation. All integrals in (3.16) are proper and in the second integral on 
the right-hand side of this expression,&(k)/k N kp5(y2 = 0) or km3(yz f 0) ask + 
a~, which enables accurate numerical evaluation. The steady contributions from 
(3.12b to d) as t + 03 are evaluated in a similar way. 

4. Results 
Figure 3(a) shows plots of the interfacial displacements given by (2.11) which are 

established at the end of the “rapid” inertial adjustment phase when y1 = 1.0 and 
y2 = 0. Initially there is a step in the surface interface, while the lower interface is 
flat. After the rapid adjustment phase, both interfaces are odd functions of x (see 
(2.11)) with rll adjusting to the initial “far field” value + 1 asx + w on the external 
Rossby radius scale r,. However, q2 varies over the short length scale, ri = @‘HI 
H21Ho)‘12 f -I, in the neighborhood of the origin, and decays exponentially to zero as 
IX 1 -+ ~0 on the e-folding length scale r,. 

After the passage of the topographic Rossby waves, a plot of the final steady 
interfaces above the escarpment is shown in Figure 3(b). In the steady state, (3.1) 
shows that qi and ni + AT-~ are the upper and lower layer geostrophic streamfunc- 
tions, respectively. Over the step ql + Aq2 is constant, which is seen in contours of 
this field in Figure 4(c), and there is no cross-step transport in the lower layer. In this 
sense the lower layer adjusts in a similar manner to a single homogeneous layer 
above topography, as discussed by Johnson (1985), Gill et al. (1986) and Willmott 
and Grimshaw (1991, 1992). Weak cross-step flow is established in the upper layer 
(see Fig. 4(a)). In the steady state the amount of fluid in the upper layer that crosses 
the step, rather than being deflected (to the left) along the step to cross atx = -CO is 
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Figure 6. As in Figure 3, except A-Q rather than q2 is plotted and the initial conditions are 
q1 = 0, Aq2 = sgn (x). 

simply, limx+-,(Aq,) = 0.075. Figure 4(a) confirms that most of the fluid does not 
cross the step within a finite distance. 

Since topographic Rossby waves propagate information unidirectionally (in the 
negative x-direction for this topography), as x + CO the interfaces TJ 1 and rt2 tend to 
the values y1 and y2A-’ respectively. Above the step (i.e. on y = 0) the final steady 
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-2 -1 0 

x-axis 
1 2 

Figure 7. Contour plots (a) to (c) as in Figure 4, except that the initial conditions of Figure 6 
are used. Surface plots of ql, A-t-2 and -ql + AQ in the final steady state are shown in (d), (e) 
and (f) respectively. In (a) and (c) the evenly spaced contour increment is 0.2. Contour 
levels 20.95, k0.9, kO.6, kO.3 and 0 are plotted in (b). 

solution for q2 adjusts from the “upstream” value of y2A-l (which is zero in this 
example) to a uniform “downstream” value, over the length scale r, (see Figs. 3(b) 
and 4(b)). This adjustment length scale is a feature common to all the final steady 
solutions for q2, irrespective of the values of y1 and y2. 

Evolution of the inter-facial displacements above the step at various values of the 
topographic adjustment time scale are shown in Figure 5. Also plotted in Figure 5 is 
q, + Aq2, although for this example this curve almost overlaps with the plot of ql 
because the latter is almost uniform above the step (see Figure 3(b)). On each curve 
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Figure 7. (Continued) 

a leading wavefront propagates at speed c,(O) = dlR(O)/dk; behind each wavefront a 
tail of dispersive waves is formed which oscillate about the final steady values. 

A plot of the interfacial displacements above the step, after the “rapid” inertial 
adjustment has taken place, is shown in Figure 6(a) for the case y1 = 0 and y2 = 1.0. 
Figure 6(a) shows that the upper layer flow consists of an intense symmetric jet 
centered about x = 0, flowing in the negative y-direction. The characteristic width of 
this jet is given by ri. On either side of the narrow jet are broad (characteristic width 
re) currents flowing in the positive y-direction. The final steady geostrophically 
adjusted interfaces above the step (see Figure 6(b)) together with contour and 
surface plots of the steady interfaces (see Figure 7) show that after the passage of the 
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Figure 7. (Continued) 

internal double Kelvin wave the topography blocks the upstream cross-step flow in 
the positive y-direction within the upper layer. Cross-step flow in the upper layer 
continues in the negativey-direction within the narrow jet centered aroundx = 0. In 
x < 0, flow in the narrow jet is augmented on either side of the step by fluid within 
semi-closed circulation cells that are formed when the topography blocks the 
upstream broad cross-step current. It can also be deduced from Figure 7(a) that in 
x < 0 a closed upper layer anticyclonic circulation occurs over the step at finite time. 
As the wavefront of the internal double Kelvin wave propagates towardx = -q the 
width of the anticyclonic circulation increases because within the gyre, cross-step 
flow in the positive y-direction occurs in the neighborhood of the advancing wave- 
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Figure 7. (Continued) 

front. Therefore in the final steady state (see Fig. 7a) the upper layer anticyclonic 
circulation is blocked by the topography. 

The final steady solution for qz is controlled by the passage of the internal double 
Kelvin wave. Figures 6(b) and 7(b) h s ow that over the step q2 and q2r vary on the 
scale ri. Since q1 + Aq2 is constant over the step in the final steady state (the constant 
is unity in this example) q1 and qt, also vary on the scale ri leading to the intense 
cross-step current (see Fig. 7a). Figure 7(c) confirms that cross-step flow in the lower 
layer is blocked by the step. 

In the case when both interfaces initially have step discontinuities perpendicular 
to the escarpment (i.e. y1 = y2 = l), Figures 8(a) and (b) show the interfaces after 
the rapid inertial adjustment and the final steady solutions above the step, respec- 
tively. Also shown in Figure 8(b) is a plot of the curve ql + Aq2 above the step, which 
has the constant value 2, corresponding to the initial value of this field far “up- 
stream.” Figure 9 shows contour plots of qi and ql + Aq2 in the final steady state and 
these can be constructed from the addition of the solutions in the two previous 
examples (i.e. superposition of the contour fields in Figures 4 and 7). Again the 
robust features of the solution are blocked cross-step lower layer transport and a 
“narrow” cross-step geostrophic jet in the upper layer. 
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Figure 7. (Continued) 

5. Summary and discussion 

This paper examines the linear Rossby adjustment problem for an inviscid 
two-layer fluid in the presence of an infinitely long step escarpment, the height of 
which is assumed to be infinitesimal compared to the average depth of the lower 
layer. For this case the vortex stretching time scale is long compared to the inertial 
time scale and this facilitates an analytical treatment of the problem. 

Initially the free surface and interfacial displacements have step discontinuities 
perpendicular to the step and the fluid is at rest with respect to the coordinate frame. 
If the flow is governed by the linear shallow water equations, how does the fluid 
evolve upon releasing the interfaces? The analogous problem has been considered by 
Gill et al. (1986) for a homogeneous fluid with a step escarpment. Gill et al. (1986) 
found that the fluid evolves to a steady geostrophic state in which no fluid can cross 
the step. A steady geostrophic state is expected to emerge for the two-layer problem, 
in which case it can be anticipated that the lower layer will behave in a manner 
qualitatively similar to the solution obtained by Gill et al. (1986). However, does the 
topography block the upper layer geostrophic flow in the steady limit? 

Following Johnson and Davey (1990) a two time-scale method shows that the 
rapid inertial adjustment of the fluid, via propagation of external and internal 
Poincart waves, is unaffected by the topography. On the slow vortex stretching time 
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scale a steady solution is established after the passage of the topographic Rossby 
waves (which are commonly referred to as internal double Kelvin waves when the 
trapping topography is an escarpment). A jet, of characteristic width ri (the internal 
Rossby radius) crosses the step in the upper layer in the final steady state. However, 
the majority of the upper layer fluid is blocked by the step; the amount of fluid which 
crosses the step is given by the value of Aq2 far “downstream,” where A is the 
stratification parameter and q2 is the interfacial displacement. “Downstream” refers 
to the direction in which the Rossby waves propagate, which in this paper is the 
negative x-direction. The results of this study support the idea that stratification 
tends to shelter the upper oceanic flow from the influence of topography. 

Gill et al. (1986) describe results from a rotating tank experiment in which a coastal 
jet in a two-layer fluid is forced to cross an escarpment which intersects a vertical 
coastal wall at right angles. Initially the free surface is flat and the interfacial 
displacement has a step (maintained by a vertical barrier) parallel to the coastal wall. 
Upon removal of the barrier a buoyancy driven coastal jet is established which is 
deflected offshore or onshore over the step escarpment depending on the geometry 
of the topography. Gill et al. (1986) note that the flow set up in the lower layer is in 
the opposite direction to that in the upper layer. The same vertical structure in the 
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Figure 8. As in Figure 6, except that the initial conditions are ql = AQ = sgn (x). Also plotted 

in (b) is the curve q, + AQ. 

velocity field is observed in this study for the case when ql = 0 and Aq2 = sgn (x) at 
t = 0. In Figure 7(a) a jet of characteristic width ri crosses the step in the upper layer, 
fromy > 0 toy < 0. Directly below the jet, and away from the step, the lower layer 
flow is in the opposite direction (Fig. 7(c)). Closer to the step the lower layer flow is 
diverted parallel to it. To date, no analytical studies on the experiments described as 
Gill et al. (1986) have been carried out. 

For finite amplitude escarpments the two time scales are not well separated. 
Further, vertical accelerations will be important in the neighborhood of the escarp- 
ment and both these factors conspire to make the Rossby adjustment problem 
difficult to solve analytically. Nevertheless the key feature of the steady solution 
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discussed here are expected to hold for the finite amplitude step, namely, non-zero 
cross-step upper layer flow provided the step is contained entirely in the lower layer. 

If an inviscid continuously stratified fluid is viewed as an N-layer fluid, with 
uniform density pN in layer N with N + ~0, then the results of this study suggest that 
topography will not block the fluid. This statement is based on the fact that except in 
the layers which contain the topography, cross-escarpment flow occurs in the steady 
solution of the Rossby adjustment problem. 

Dissipation in the form of interfacial or bottom friction will lead to cross- 
escarpment flow within frictional boundary layers. However, viscous problems of this 
type have yet to be solved analytically. Numerical calculations (Allen, 1988 and 
Wajsowicz, 1991) show the importance of frictional boundary layers in the neighbor- 
hood of topography. Process studies of the type reported here help to shed light on 
how deep water formed in the Arctic basin crosses the Icelandic Ridge to enter the 
deep North Atlantic basin. Wajsowicz (1991) carried out numerical experiments with 
a two-year model to address this question. Wajsowicz considers two rectangular 
ocean basins which are separated by a zonally aligned top hat ridge, the width of 
which is much greater than the internal Rossby radius of deformation. The numerical 
calculations show that cross-ridge transport in the lower layer only occurs in 
boundary layers located where the ridge meets the meridional channel walls. The 
analysis in this study would predict that without coastal walls perpendicular to the 
ridge, no cross-ridge transport would occur in the lower layer, unless diffusive effects 
were extremely large. 

Hermann et al. (1989) consider nonlinear effects on the inviscid Rossby adjustment 
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Figure 9. Contour plots of (a) the upper layer streamfunction for the final steady state, ~1; (b) 

the lower layer streamfunction in the final steady state, q1 + AQ. The initial conditions are 
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problem for a homogeneous fluid in a channel. The cross-channel barrier that 

initially separates fluid of different depths forms a potential vorticity front. Nonlin- 
earity leads to the front being advected downstream, leaving behind a symmetric 

steady flow in the channel. In comparison, linear theory predicts that after the 
passage of Kelvin waves trapped against the channel walls, an asymmetric steady flow 
is established. Weak nonlinear effects prevent the linear solution from being valid for 
all time. Clearly it will be worthwhile to consider the two-layer analogue of the 
problem addressed by Hermann et al. (1989). 
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APPENDIX A 

Evaluation of the Fourier integrals 

Consider the Fourier integral 
n 

1(x, t) = & J:mF$ exp [ikx + io(k)t]dk, (Al) 

where the amplitude k(k) and the frequency o(k) are real even and odd functions of 
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k respectively, h(O) is finite and the phase speed 

c,(k) = o(k)lk, 

is finite for long waves i.e. 

c,(O) = c,(O) = c (say>, 

where c,(O) is the group speed for long waves. Over the escarpment (y = 0) the 
contribution from the time dependent terms in (3.12) can be written in the form 
(Al). It is convenient to decompose Z into the sum of two integrals of the form 

Z,(x, t) = & s_*, ‘2 {exp (ikx + iwt) - exp (ikx + ikct)}dk, 

m i’(k) 
Z,(x, t) = & J-, r exp (ikx + ikct)dk. 

Now Ii can be written as 
n 

Z,(x,  t )  = ;  cl;;* Fq [sin (Zcx + ot) - sin [k(x + ct)]]dk 

=-- ~~~sin[~k~(c~-c)][-sinkxsin[ikt(c,+c)] 

+ coskxcos [;kt(c, +c)])dk, 

and therefore the integrand is O(k) ask -+ 0. Thus 

pliI Zl(X, t) = 0. 

Integral Z2 can be written as 

sin [k(x + ct)]dk + i h(O) sgn (x + ct). (A2) 

The integral on the right-hand side of (A2) is a function of x + ct only and is 
well-defined at k = 0. In fact for the evaluation of the Fourier integrals (3.12), the 
forms of k(k) are such that, &‘(O)ldk = 0, and therefore 

piI Z*(x, t) = ii(O). 

Parameter values 

APPENDIX B 

Hi = 450 m, H- = 4500 m, 6 = 0.1 (giving a step height 6H- = 450 m), A = 10-Z 
(strongly stratified). 
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