89 research outputs found
Chemical analysis of Greek pollen - Antioxidant, antimicrobial and proteasome activation properties
<p>Abstract</p> <p>Background</p> <p>Pollen is a bee-product known for its medical properties from ancient times. In our days is increasingly used as health food supplement and especially as a tonic primarily with appeal to the elderly to ameliorate the effects of ageing. In order to evaluate the chemical composition and the biological activity of Greek pollen which has never been studied before, one sample with identified botanical origin from sixteen different common plant taxa of Greece has been evaluated.</p> <p>Results</p> <p>Three different extracts of the studied sample of Greek pollen, have been tested, in whether could induce proteasome activities in human fibroblasts. The water extract was found to induce a highly proteasome activity, showing interesting antioxidant properties. Due to this activity the aqueous extract was further subjected to chemical analysis and seven flavonoids have been isolated and identified by modern spectral means. From the methanolic extract, sugars, lipid acids, phenolic acids and their esters have been also identified, which mainly participate to the biosynthetic pathway of pollen phenolics. The total phenolics were estimated with the Folin-Ciocalteau reagent and the total antioxidant activity was determined by the DPPH method while the extracts and the isolated compounds were also tested for their antimicrobial activity by the dilution technique.</p> <p>Conclusions</p> <p>The Greek pollen is rich in flavonoids and phenolic acids which indicate the observed free radical scavenging activity, the effects of pollen on human fibroblasts and the interesting antimicrobial profile.</p
Ecologically Appropriate Xenobiotics Induce Cytochrome P450s in Apis mellifera
BACKGROUND: Honey bees are exposed to phytochemicals through the nectar, pollen and propolis consumed to sustain the colony. They may also encounter mycotoxins produced by Aspergillus fungi infesting pollen in beebread. Moreover, bees are exposed to agricultural pesticides, particularly in-hive acaricides used against the parasite Varroa destructor. They cope with these and other xenobiotics primarily through enzymatic detoxificative processes, but the regulation of detoxificative enzymes in honey bees remains largely unexplored. METHODOLOGY/PRINCIPAL FINDINGS: We used several approaches to ascertain effects of dietary toxins on bee susceptibility to synthetic and natural xenobiotics, including the acaricide tau-fluvalinate, the agricultural pesticide imidacloprid, and the naturally occurring mycotoxin aflatoxin. We administered potential inducers of cytochrome P450 enzymes, the principal biochemical system for Phase 1 detoxification in insects, to investigate how detoxification is regulated. The drug phenobarbital induces P450s in many insects, yet feeding bees with phenobarbital had no effect on the toxicity of tau-fluvalinate, a pesticide known to be detoxified by bee P450s. Similarly, no P450 induction, as measured by tau-fluvalinate tolerance, occurred in bees fed xanthotoxin, salicylic acid, or indole-3-carbinol, all of which induce P450s in other insects. Only quercetin, a common pollen and honey constituent, reduced tau-fluvalinate toxicity. In microarray comparisons no change in detoxificative gene expression was detected in phenobarbital-treated bees. However, northern blot analyses of guts of bees fed extracts of honey, pollen and propolis showed elevated expression of three CYP6AS P450 genes. Diet did not influence tau-fluvalinate or imidacloprid toxicity in bioassays; however, aflatoxin toxicity was higher in bees consuming sucrose or high-fructose corn syrup than in bees consuming honey. CONCLUSIONS/SIGNIFICANCE: These results suggest that regulation of honey bee P450s is tuned to chemicals occurring naturally in the hive environment and that, in terms of toxicological capacity, a diet of sugar is not equivalent to a diet of honey
Glaucoma progression is associated with decreased blood flow velocities in the short posterior ciliary artery
BACKGROUND: An altered perfusion of the optic nerve head has been proposed as a pathogenic factor in glaucoma. AIM: To investigate potential differences in the ocular haemodynamics of patients having glaucoma with progressive versus stable disease, as well as healthy volunteers. METHODS: Peak‐systolic velocity (PSV), end‐diastolic velocity (EDV) and resistivity index in the short posterior ciliary artery (SPCA), central retinal artery (CRA) and ophthalmic artery were recorded in 114 consecutive patients having glaucoma with an intraocular pressure (IOP) ⩽21 mm Hg, as well as in 40 healthy volunteers, by colour Doppler imaging (CDI). RESULTS: Of the 114 patients with glaucoma, 12 showed glaucoma progression (follow‐up period: mean 295 (standard deviation (SD) (18) days). CDI measurements in these patients showed decreased PSV and EDV in the SPCA (p<0.001 and p<0.05, respectively) and decreased PSV in the CRA compared with patients with stable glaucoma and healthy controls (p<0.05). No differences in flow velocities were found for the ophthalmic artery. IOP and systemic blood pressure was similar in all the three groups. CONCLUSIONS: Progressive glaucoma is associated with decreased blood flow velocities in the small retrobulbar vessels supplying the optic nerve head. The detected difference could represent a risk factor for progression of glaucomatous optic neuropathy
- …