894 research outputs found

    HD 85567: A Herbig B[e] star or an interacting B[e] binary

    Full text link
    Context. HD 85567 is an enigmatic object exhibiting the B[e] phenomenon, i.e. an infrared excess and forbidden emission lines in the optical. The object's evolutionary status is uncertain and there are conflicting claims that it is either a young stellar object or an evolved, interacting binary. Aims. To elucidate the reason for the B[e] behaviour of HD 85567, we have observed it with the VLTI and AMBER. Methods. Our observations were conducted in the K-band with moderate spectral resolution (R~1500, i.e. 200 km/s). The spectrum of HD 85567 exhibits Br gamma and CO overtone bandhead emission. The interferometric data obtained consist of spectrally dispersed visibilities, closure phases and differential phases across these spectral features and the K-band continuum. Results. The closure phase observations do not reveal evidence of asymmetry. The apparent size of HD 85567 in the K-band was determined by fitting the visibilities with a ring model. The best fitting radius, 0.8 +/- 0.3 AU, is relatively small making HD 85567 undersized in comparison to the size-luminosity relationship based on YSOs of low and intermediate luminosity. This has previously been found to be the case for luminous YSOs, and it has been proposed that this is due to the presence of an optically thick gaseous disc. We demonstrate that the differential phase observations over the CO bandhead emission are indeed consistent with the presence of a compact (~1 AU) gaseous disc interior to the dust sublimation radius. Conclusions. The observations reveal no sign of binarity. However, the data do indicate the presence of a gaseous disc interior to the dust sublimation radius. We conclude that the data are consistent with the hypothesis that HD 85567 is a YSO with an optically thick gaseous disc within a larger dust disc that is being photo-evaporated from the outer edge.Comment: Accepted for publication in A &

    AMBER and CRIRES observations of the binary sgB[e] star HD 327083: evidence of a gaseous disc traced by CO bandhead emission

    Full text link
    HD 327083 is a sgB[e] star that forms a binary system with an orbital semi-major axis of ~1.7 AU. Our previous observations using the VLTI and AMBER in the medium resolution K-band mode spatially resolved the environment of HD 327083. The continuum visibilities obtained indicate the presence of a circumbinary disc. CO bandhead emission was also observed. However, due to the limited spectral resolution of the previous observations, the kinematic structure of the emitting material was not constrained. In this paper, we address this and probe the source of the CO emission with high spectral resolution and spatial precision. We have observed HD 327083 with high spectral resolution (25 & 6 km/s) using AMBER and CRIRES. The observations are compared to kinematical models to constrain the source of the emission. It is shown that the CO bandhead emission can be reproduced using a model of a Keplerian disc with an inclination and size consistent with our previous VLTI observations. The model is compared to AMBER differential phase measurements, which have a precision as high as 30-micro-arcseconds. A differential phase signal corresponding to 0.15 milli-arcseconds (~5 sigma) is seen over the bandhead emission, which is in excellent agreement with the model that fits the CRIRES observations. In comparison, a model of an equatorial outflow, as envisaged in the standard sgB[e] scenario, does not reproduce the observations well. The excellent agreement between the disc model and observations in the spatial and spectral domains is compelling evidence that the CO bandhead emission of HD 327083 originates in a circumbinary Keplerian disc. In contrast, the model of an equatorial outflow cannot reproduce the observations well. This suggests that the standard sgB[e] scenario is not applicable to HD 327083, which supports the hypothesis that the B[e] behaviour of HD 327083 is due to binarity (ABRIDGED).Comment: Accepted for publication in A&

    Probing discs around massive young stellar objects with CO first overtone emission

    Full text link
    We present high resolution (R~50,000) spectroastrometry over the CO 1st overtone bandhead of a sample of seven intermediate/massive young stellar objects. These are primarily drawn from the red MSX source (RMS) survey, a systematic search for young massive stars which has returned a large, well selected sample of such objects. The mean luminosity of the sample is approximately 5 times 10^4 L_\odot, indicating the objects typically have a mass of ~15 solar masses. We fit the observed bandhead profiles with a model of a circumstellar disc, and find good agreement between the models and observations for all but one object. We compare the high angular precision (0.2-0.8 mas) spectroastrometric data to the spatial distribution of the emitting material in the best-fitting models. No spatial signatures of discs are detected, which is entirely consistent with the properties of the best-fitting models. Therefore, the observations suggest that the CO bandhead emission of massive young stellar objects originates in small-scale disks, in agreement with previous work. This provides further evidence that massive stars form via disc accretion, as suggested by recent simulations.Comment: Accepted for publication in MNRA

    Development and testing of the Active Temperature, Ozone and Moisture Microwave Spectrometer (ATOMMS) cm and mm wavelength occultation instrument

    Get PDF
    We present initial results from testing a new remote sensing system called the Active Temperature, Ozone and Moisture Microwave Spectrometer (ATOMMS). ATOMMS is designed as a satellite-to-satellite occultation system for monitoring climate. We are developing the prototype instrument for an aircraft to aircraft occultation demonstration. Here we focus on field testing of the ATOMMS instrument, in particular the remote sensing of water by measuring the attenuation caused by the 22 GHz and 183 GHz water absorption lines. Our measurements of the 183 GHz line spectrum along an 820 m path revealed that the AM 6.2 spectroscopic model provdes a much better match to the observed spectrum than the MPM93 model. These comparisons also indicate that errors in the ATOMMS amplitude measurements are about 0.3%. Pressure sensitivity bodes well for ATOMMS as a climate instrument. Comparisons with a hygrometer revealed consistency at the 0.05 mb level, which is about 1% of the absolute humidity. Initial measurements of absorption by the 22 GHz line made along a 5.4 km path between two mountaintops captured a large increase in water vapor similar to that measured by several nearby hygrometers. A storm passage between the two instruments yielded our first measurements of extinction by rain and cloud droplets. Comparisons of ATOMMS 1.5 mm opacity measurements with measured visible opacity and backscatter from a weather radar revealed features simultaneously evident in all three datasets confirming the ATOMMS measurements. The combined ATOMMS, radar and visible information revealed the evolution of rain and cloud amounts along the signal path during the passage of the storm. The derived average cloud water content reached typical continental cloud amounts. These results demonstrated a significant portion of the information content of ATOMMS and its ability to penetrate through clouds and rain which is critical to its all-weather, climate monitoring capability

    The narrow, inner CO ring around the magnetic Herbig Ae star, HD 101412

    Full text link
    We describe and model emission lines in the first overtone band of CO in the magnetic Herbig Ae star HD 101412. High-resolution CRIRES spectra reveal unusually sharp features which suggest the emission is formed in a thin disk centered at 1 AU with a width 0.32 AU or less. A wider disk will not fit the observations. Previous observations have reached similar conclusions, but the crispness of the new material brings the emitting region into sharp focus.Comment: Accepted as Astronomy and Astrophysics Letter; 4 pages, 5 figure

    VLTI/AMBER observations of the binary B[e] supergiant HD 327083

    Full text link
    HD 327083 is a luminous B type star which exhibits emission lines and an infrared excess and is therefore classified as a supergiant B[e] star. In addition, the star is the primary of a close binary system. It is not clear whether the B[e] behaviour of HD 327083 is related to its binarity or its evolutionary state. Here we address this issue by studying its circumstellar environment with high spatial resolution. To this end, we have observed HD 327083 with the VLTI and AMBER in the medium resolution K-band setting. 13CO bandhead emission is detected, confirming HD 327083 is a post-main sequence object. The observations spatially resolve the source of the NIR continuum and the Br-gamma and CO line emission. In addition, differential phase measurements allow us to probe the origin of the observed Br-gamma emission with sub-mas precision. Using geometrical models, we find that the visibilities and closure phases suggest that the close binary system is surrounded by a circum-binary disk. We also find that in the case of the binary HD 327083, the relative sizes of the continuum and Br-gamma emitting regions are different to those of a single supergiant B[e] star where the standard dual outflow scenario is thought to apply. These findings are consistent with the hypothesis that the mass loss of HD 327083 is related to its binary nature.Comment: Accepted in A&

    Tracers of Discs and Winds around Intermediate and High Mass Young Stellar Objects

    Get PDF
    We present a study of the kinematical properties of a small sample of nearby near-infrared bright massive and intermediate mass young stellar objects using emission lines sensitive to discs and winds. We show for the first time that the broad (500\sim500kms1^{-1}) symmetric line wings on the HI Brackett series lines are due to Stark broadening or electron scattering, rather than pure Doppler broadening due to high speed motion. The results are consistent with the presence of a very dense circumstellar environment. In addition, many of these lines show evidence for weak line self-absorption, suggestive of a wind or disc-wind origin for that part of the absorbing material. The weakness of the self-absorption suggests a large opening angle for such an outflow. We also study the fluorescent 1.688μ\mum FeII line, which is sensitive to dense material. We fitted a Keplerian disc model to this line, and find reasonable fits in all bar one case, in agreement with previous finding for classical Be stars that fluorescent iron transitions are reasonable disc tracers. Overall the picture is one in which these stars still have accretion discs, with a very dense inner circumstellar environment which may be tracing either the inner regions of a disc, or of a stellar wind, and in which ionised outflow is also present. The similarity with lower mass stars is striking, suggesting that at least in this mass range they form in a similar fashion.Comment: 20 pages, 7 figures, accepted for publication in MNRA

    Probing the properties of Be star discs with spectroastrometry and NLTE radiative transfer modelling: beta CMi

    Full text link
    While the presence of discs around classical Be stars is well established, their origin is still uncertain. To understand what processes result in the creation of these discs and how angular momentum is transported within them, their physical properties must be constrained. This requires comparing high spatial and spectral resolution data with detailed radiative transfer modelling. We present a high spectral resolution, R~80,000, sub milli-arcsecond precision, spectroastrometric study of the circumstellar disc around the Be star beta CMi. The data are confronted with three-dimensional, NLTE radiative transfer calculations to directly constrain the properties of the disc. Furthermore, we compare the data to disc models featuring two velocity laws; Keperian, the prediction of the viscous disc model, and angular momentum conserving rotation. It is shown that the observations of beta CMi can only be reproduced using Keplerian rotation. The agreement between the model and the observed SED, polarisation and spectroastrometric signature of beta CMi confirms that the discs around Be stars are well modelled as viscous decretion discs.Comment: Accepted for publication in MNRA

    LBT/LUCIFER near-infrared spectroscopy of PV Cephei. An outbursting young stellar object with an asymmetric jet

    Get PDF
    We present a detailed spectroscopic investigation of the young eruptive star PV Cep, to improve our understanding of its nature and characterise its circumstellar environment after its last outburst in 2004. The analysis of our medium-resolution spectroscopy in the near-IR (0.9-2.35 um), collected in 2012 at the Large Binocular Telescope with the IR spectrograph LUCIFER, allows us to infer the main stellar parameters (visual extinction, accretion luminosity, mass accretion and ejection rates), and model the inner disc, jet, and wind. The NIR spectrum displays several strong emission lines associated with accretion/ejection activity and circumstellar environment. Our analysis shows that the brightness of PV Cep is fading, as well as the mass accretion rate (2x10^-7 Msun/yr^-1 in 2012 vs ~5x10^-6 Msun/yr^-1 in 2004), which is more than one order of magnitude lower than in the outburst phase. Among the several emission lines, only the [FeII] intensity increased after the outburst. The observed [FeII] emission delineates blue- and red-shifted lobes, both with high- and low-velocity components, which trace an asymmetric jet and wind, respectively. The observed emission in the jet has a dynamical age of ~8 years, indicating that it was produced during the last outburst. The mass ejection rate in both lobes is 1.5x10^-7 Msun/yr^-1, approximately matching the high accretion rate observed during and immediately after the outburst . The observed jet/outflow asymmetries are consistent with an inhomogeneous medium. Our modelling of the CO emission hints at a small-scale gaseous disc ring, extending from ~0.2-0.4 AU to ~3 AU from the source, with an inner temperature of ~3000 K. Our HI lines modelling indicates that most of the observed emission comes from an expanding disc wind at Te=10000 K. The line profiles are strongly affected by scattering, disc screening, and outflow self-absorption.Comment: To be published in A&
    corecore