945 research outputs found

    An intervention to advance piagetian levels of cognitive development and algebraic reasoning in high-school students

    Get PDF
    Includes bibliographical references (pages [89]-94).This dissertation addressed the relationship between levels of Piagetian cognitive development and algebraic reasoning. A correlational analysis was conducted to show the relationship between levels of Piagetian cognitive development and algebraic reasoning and also to show the relationship between levels of Piagetian cognitive development and algebra course grades. High-school students were chosen because they are at the age approximation Piaget predicted children would transition from concrete operations to formal operations. An intervention followed with a small group of students to accelerate their transition to formal operations. The types of strategies used and the errors made during the intervention were observed and calculated. The objectives of this study were as follows: (1) to determine whether there is a relationship between Piagetian levels of cognitive development and the level of algebraic reasoning in high-school freshmen, (2) to determine whether there is a relationship between Piagetian levels of cognitive development and grades in algebra class in high-school freshmen, (3) to determine whether the intervention group had a statistically significantly greater change in level of Piagetian cognitive development from the transitional stage between concrete operations and formal operations to formal operations than the comparison group, (4) to determine what types of strategies the intervention students used who successfully shifted to formal operations, and (5) to determine the patterns of errors of the intervention students who did not successfully shift to formal operations. The results indicate that there is a significant positive relationship between the Piagetian level of cognitive development and levels of algebraic reasoning in highschool freshmen but not between Piagetian levels of cognitive development and algebra course grades. The results did not show that the students who participated in the intervention had a greater change in the level of Piagetian cognitive development than the students who did not receive the intervention. The results showed that the intervention students who successfully shifted to formal operations used algebraic strategies more than 50% of the time. The students who participated in the intervention and did not successfully shift to formal operations primarily made pattern errors or made errors when writing arithmetic equations to solve problems.Ed.D. (Doctor of Education

    Structural basis for the homotypic fusion of chlamydial inclusions by the SNARE-like protein IncA.

    Get PDF
    Many intracellular bacteria, including Chlamydia, establish a parasitic membrane-bound organelle inside the host cell that is essential for the bacteria\u27s survival. Chlamydia trachomatis forms inclusions that are decorated with poorly characterized membrane proteins known as Incs. The prototypical Inc, called IncA, enhances Chlamydia pathogenicity by promoting the homotypic fusion of inclusions and shares structural and functional similarity to eukaryotic SNAREs. Here, we present the atomic structure of the cytoplasmic domain of IncA, which reveals a non-canonical four-helix bundle. Structure-based mutagenesis, molecular dynamics simulation, and functional cellular assays identify an intramolecular clamp that is essential for IncA-mediated homotypic membrane fusion during infection

    Density-functional embedding using a plane-wave basis

    Full text link
    The constrained electron density method of embedding a Kohn-Sham system in a substrate system (first described by P. Cortona, Phys. Rev. B {\bf 44}, 8454 (1991) and T.A. Wesolowski and A. Warshel, J. Phys. Chem {\bf 97}, 8050 (1993)) is applied with a plane-wave basis and both local and non-local pseudopotentials. This method divides the electron density of the system into substrate and embedded electron densities, the sum of which is the electron density of the system of interest. Coupling between the substrate and embedded systems is achieved via approximate kinetic energy functionals. Bulk aluminium is examined as a test case for which there is a strong interaction between the substrate and embedded systems. A number of approximations to the kinetic-energy functional, both semi-local and non-local, are investigated. It is found that Kohn-Sham results can be well reproduced using a non-local kinetic energy functional, with the total energy accurate to better than 0.1 eV per atom and good agreement between the electron densities.Comment: 11 pages, 4 figure

    Chlamydia Hijacks ARF GTPases To Coordinate Microtubule Posttranslational Modifications and Golgi Complex Positioning.

    Get PDF
    The intracellular bacterium Chlamydia trachomatis develops in a parasitic compartment called the inclusion. Posttranslationally modified microtubules encase the inclusion, controlling the positioning of Golgi complex fragments around the inclusion. The molecular mechanisms by which Chlamydia coopts the host cytoskeleton and the Golgi complex to sustain its infectious compartment are unknown. Here, using a genetically modified Chlamydia strain, we discovered that both posttranslationally modified microtubules and Golgi complex positioning around the inclusion are controlled by the chlamydial inclusion protein CT813/CTL0184/InaC and host ARF GTPases. CT813 recruits ARF1 and ARF4 to the inclusion membrane, where they induce posttranslationally modified microtubules. Similarly, both ARF isoforms are required for the repositioning of Golgi complex fragments around the inclusion. We demonstrate that CT813 directly recruits ARF GTPases on the inclusion membrane and plays a pivotal role in their activation. Together, these results reveal that Chlamydia uses CT813 to hijack ARF GTPases to couple posttranslationally modified microtubules and Golgi complex repositioning at the inclusion.IMPORTANCEChlamydia trachomatis is an important cause of morbidity and a significant economic burden in the world. However, how Chlamydia develops its intracellular compartment, the so-called inclusion, is poorly understood. Using genetically engineered Chlamydia mutants, we discovered that the effector protein CT813 recruits and activates host ADP-ribosylation factor 1 (ARF1) and ARF4 to regulate microtubules. In this context, CT813 acts as a molecular platform that induces the posttranslational modification of microtubules around the inclusion. These cages are then used to reposition the Golgi complex during infection and promote the development of the inclusion. This study provides the first evidence that ARF1 and ARF4 play critical roles in controlling posttranslationally modified microtubules around the inclusion and that Chlamydia trachomatis hijacks this novel function of ARF to reposition the Golgi complex

    Transcriptional repression of Hox genes by C. elegans HP1/HPL and H1/HIS-24.

    No full text
    Elucidation of the biological role of linker histone (H1) and heterochromatin protein 1 (HP1) in mammals has been difficult owing to the existence of a least 11 distinct H1 and three HP1 subtypes in mice. Caenorhabditis elegans possesses two HP1 homologues (HPL-1 and HPL-2) and eight H1 variants. Remarkably, one of eight H1 variants, HIS-24, is important for C. elegans development. Therefore we decided to analyse in parallel the transcriptional profiles of HIS-24, HPL-1/-2 deficient animals, and their phenotype, since hpl-1, hpl-2, and his-24 deficient nematodes are viable. Global transcriptional analysis of the double and triple mutants revealed that HPL proteins and HIS-24 play gene-specific roles, rather than a general repressive function. We showed that HIS-24 acts synergistically with HPL to allow normal reproduction, somatic gonad development, and vulval cell fate decision. Furthermore, the hpl-2; his-24 double mutant animals displayed abnormal development of the male tail and ectopic expression of C. elegans HOM-C/Hox genes (egl-5 and mab-5), which are involved in the developmental patterning of male mating structures. We found that HPL-2 and the methylated form of HIS-24 specifically interact with the histone H3 K27 region in the trimethylated state, and HIS-24 associates with the egl-5 and mab-5 genes. Our results establish the interplay between HPL-1/-2 and HIS-24 proteins in the regulation of positional identity in C. elegans males

    Dimming the Powerhouse: Mitochondrial Dysfunction in the Liver and Skeletal Muscle of Intrauterine Growth Restricted Fetuses

    Get PDF
    Intrauterine growth restriction (IUGR) of the fetus, resulting from placental insufficiency (PI), is characterized by low fetal oxygen and nutrient concentrations that stunt growth rates of metabolic organs. Numerous animal models of IUGR recapitulate pathophysiological conditions found in human fetuses with IUGR. These models provide insight into metabolic dysfunction in skeletal muscle and liver. For example, cellular energy production and metabolic rate are decreased in the skeletal muscle and liver of IUGR fetuses. These metabolic adaptations demonstrate that fundamental processes in mitochondria, such as substrate utilization and oxidative phosphorylation, are tempered in response to low oxygen and nutrient availability. As a central metabolic organelle, mitochondria coordinate cellular metabolism by coupling oxygen consumption to substrate utilization in concert with tissue energy demand and accretion. In IUGR fetuses, reducing mitochondrial metabolic capacity in response to nutrient restriction is advantageous to ensure fetal survival. If permanent, however, these adaptations may predispose IUGR fetuses toward metabolic diseases throughout life. Furthermore, these mitochondrial defects may underscore developmental programming that results in the sequela of metabolic pathologies. In this review, we examine how reduced nutrient availability in IUGR fetuses impacts skeletal muscle and liver substrate catabolism, and discuss how enzymatic processes governing mitochondrial function, such as the tricarboxylic acid cycle and electron transport chain, are regulated. Understanding how deficiencies in oxygen and substrate metabolism in response to placental restriction regulate skeletal muscle and liver metabolism is essential given the importance of these tissues in the development of later lifer metabolic dysfunction

    Planar Dirac Electron in Coulomb and Magnetic Fields

    Get PDF
    The Dirac equation for an electron in two spatial dimensions in the Coulomb and homogeneous magnetic fields is discussed. For weak magnetic fields, the approximate energy values are obtained by semiclassical method. In the case with strong magnetic fields, we present the exact recursion relations that determine the coefficients of the series expansion of wave functions, the possible energies and the magnetic fields. It is found that analytic solutions are possible for a denumerably infinite set of magnetic field strengths. This system thus furnishes an example of the so-called quasi-exactly solvable models. A distinctive feature in the Dirac case is that, depending on the strength of the Coulomb field, not all total angular momentum quantum number allow exact solutions with wavefunctions in reasonable polynomial forms. Solutions in the nonrelativistic limit with both attractive and repulsive Coulomb fields are briefly discussed by means of the method of factorization.Comment: 18 pages, RevTex, no figure
    corecore