467 research outputs found

    Behavioral Profiling of SCADA Network Traffic using Machine Learning Algorithms

    Get PDF
    Mixed traffic networks containing both traditional ICT network traffic and SCADA network traffic are more commonplace now due to the desire for remote control and monitoring of industrial processes. The ability to identify SCADA devices on a mixed traffic network with zero prior knowledge, such as port, protocol or IP address, is desirable since SCADA devices are communicating over corporate networks but typically use non-standard ports and proprietary protocols. Four supervised ML algorithms are tested on a mixed traffic dataset containing 116,527 dataflows from both SCADA and traditional ICT networks: Naive Bayes, NBTree, BayesNet, and J4.8. Using packet timing, packet size and data throughput as traffic behavior categories, this research calculates 24 attributes from each device dataflow. All four algorithms are tested with three attribute subsets: a full set and two reduced attribute subsets. The attributes and ML algorithms chosen for experimentation successfully demonstrate that a TPR of .9935 for SCADA network traffic is feasible on a given network. It also successfully identifies an optimal attribute subset, while maintaining at least a .99 TPR. The optimal attribute subset provides the SCADA network traffic behaviors that most effectively differentiating them from traditional ICT network traffic

    Combining Genome Wide Association Studies and Differential Gene Expression Data Analyses Identifies Candidate Genes Affecting Mastitis Caused by Two Different Pathogens in the Dairy Cow

    Get PDF
    Mastitis is a costly disease which hampers the dairy industry. Inflammation of the mammary gland is commonly caused by bacterial infection, mainly Escherichia coli, Streptococcus uberis and Staphylococcus aureus. As more bacteria become multi-drug resistant, one potential approach to reduce the disease incidence rate is to breed selectively for the most appropriate and potentially protective innate immune response. The genetic contribution to effective disease resistance is, however, difficult to identify due to the complex interactions that occur. In the present study two published datasets were searched for common differentially expressed genes (DEGs) with similar changes in expression in mammary tissue following intra-mammary challenge with either E. coli or S. uberis. Additionally, the results of seven published genome-wide association studies (GWAS) on different dairy cow populations were used to compile a list of SNPs associated with somatic cell count. All genes located within 2 Mbp of significant SNPs were retrieved from the Ensembl database, based on the UMD3.1 assembly. A final list of 48 candidate genes with a role in the innate immune response identified from both the DEG and GWAS studies was further analyzed using Ingenuity Pathway Analysis. The main signalling pathways highlighted in the response of the bovine mammary gland to both bacterial infections were 1) granulocyte adhesion and diapedesis, 2) ephrin receptor signalling, 3) RhoA signalling and 4) LPS/IL1 mediated inhibition of RXR function. These pathways comprised a network regulating the activity of leukocytes, especially neutrophils, during mammary gland inflammation. The timely and properly controlled movement of leukocytes to infection loci seems particularly important in achieving a good balance between pathogen elimination and excessive tissue damage. These results suggest that polymorphisms in key genes in these pathways such as SELP, SELL, BCAR1, ACTR3, CXCL2, CXCL6, CXCL8 and FABP may influence the ability of dairy cows to resist mastitis

    Solubility of precursors and carbonation of waterglass-free geopolymers

    Get PDF
    Geopolymers have the potential to function as an environmentally friendly substitute for ordinary Portland cement, with up to 80% less CO2_{2} emission during production. The effect is best utilized for geopolymers prepared with amorphous silica instead of waterglass (Na2x_{2x}Siy_{y}O2y+x_{2y+x}) to adjust the Si:Al ratio. The reactivity of the precursors with the alkaline activator affects the final mineralogical properties of the binder. The purpose of the present study was to investigate the amount of different phases formed during geopolymerization and to understand the quantitative evolution of carbonation during geopolymer synthesis by determining the solubility of metakaolinite and amorphous SiO2_{2} in NaOH at various concentrations. The solubility was studied by ICP-OES measurements. X-ray diffraction was used for qualitative and quantitative phase analysis of the geopolymers. The solubility of the precursors increased with calcination temperature of metakaolinite, reaction time for amorphous SiO2_{2}, and at higher NaOH concentrations. Partial dissolution resulted in free Na+^{+}, which is a source for the formation of carbonates in the geopolymers. Thermonatrite occurred prior to trona formation in all samples

    The Phylogeography of Rabies in Grenada, West Indies, and Implications for Control

    Get PDF
    In Grenada, West Indies, rabies is endemic, and is thought to be maintained in a wildlife host, the small Indian mongoose (Herpestes auropunctatus) with occasional spillover into other hosts. Therefore, the present study was undertaken to improve understanding of rabies epidemiology in Grenada and to inform rabies control policy. Mongooses were trapped island-wide between April 2011 and March 2013 and examined for the presence of Rabies virus (RABV) antigen using the direct fluorescent antibody test (dFAT) and PCR, and for serum neutralizing antibodies (SNA) using the fluorescent antibody virus neutralization test (FAVN). An additional cohort of brain samples from clinical rabies suspects submitted between April 2011 and March 2014 were also investigated for the presence of virus. Two of the 171 (1.7%) live-trapped mongooses were RABV positive by FAT and PCR, and 20 (11.7%) had SNAs. Rabies was diagnosed in 31 of the submitted animals with suspicious clinical signs: 16 mongooses, 12 dogs, 2 cats and 1 goat. Our investigation has revealed that rabies infection spread from the northeast to the southwest of Grenada within the study period. Phylogenetic analysis revealed that the viruses from Grenada formed a monophyletic clade within the cosmopolitan lineage with a common ancestor predicted to have occurred recently (6–23 years ago), and are distinct from those found in Cuba and Puerto Rico, where mongoose rabies is also endemic. These data suggest that it is likely that this specific strain of RABV was imported from European regions rather than the Americas. These data contribute essential information for any potential rabies control program in Grenada and demonstrate the importance of a sound evidence base for planning interventions

    Macrophage Sub-Populations and the Lipoxin A4 Receptor Implicate Active Inflammation during Equine Tendon Repair

    Get PDF
    Macrophages (Mϕ) orchestrate inflammatory and reparatory processes in injured connective tissues but their role during different phases of tendon healing is not known. We investigated the contribution of different Mϕ subsets in an equine model of naturally occurring tendon injury. Post mortem tissues were harvested from normal (uninjured), sub-acute (3–6 weeks post injury) and chronically injured (>3 months post injury) superficial digital flexor tendons. To determine if inflammation was present in injured tendons, Mϕ sub-populations were quantified based on surface antigen expression of CD172a (pan Mϕ), CD14highCD206low (pro-inflammatory M1Mϕ), and CD206high (anti-inflammatory M2Mϕ) to assess potential polarised phenotypes. In addition, the Lipoxin A4 receptor (FPR2/ALX) was used as marker for resolving inflammation. Normal tendons were negative for both Mϕ and FPR2/ALX. In contrast, M1Mϕ predominated in sub-acute injury, whereas a potential phenotype-switch to M2Mϕ polarity was seen in chronic injury. Furthermore, FPR2/ALX expression by tenocytes was significantly upregulated in sub-acute but not chronic injury. Expression of the FPR2/ALX ligand Annexin A1 was also significantly increased in sub-acute and chronic injuries in contrast to low level expression in normal tendons. The combination of reduced FPR2/ALX expression and persistence of the M2Mϕ phenotype in chronic injury suggests a potential mechanism for incomplete resolution of inflammation after tendon injury. To investigate the effect of pro-inflammatory mediators on lipoxin A4 (LXA4) production and FPR2/ALX expression in vitro, normal tendon explants were stimulated with interleukin-1 beta and prostaglandin E2. Stimulation with either mediator induced LXA4 release and maximal upregulation of FPR2/ALX expression after 72 hours. Taken together, our data suggests that although tenocytes are capable of mounting a protective mechanism to counteract inflammatory stimuli, this appears to be of insufficient duration and magnitude in natural tendon injury, which may potentiate chronic inflammation and fibrotic repair, as indicated by the presence of M2Mϕ

    Adaptive evolution of Toll-like receptor 5 in domesticated mammals

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous studies have proposed that mammalian toll like receptors (TLRs) have evolved under diversifying selection due to their role in pathogen detection. To determine if this is the case, we examined the extent of adaptive evolution in the TLR5 gene in both individual species and defined clades of the mammalia.</p> <p>Results</p> <p>In support of previous studies, we find evidence of adaptive evolution of mammalian TLR5. However, we also show that TLR5 genes of domestic livestock have a concentration of single nucleotide polymorphisms suggesting a specific signature of adaptation. Using codon models of evolution we have identified a concentration of rapidly evolving codons within the TLR5 extracellular domain a site of interaction between host and the bacterial surface protein flagellin.</p> <p>Conclusions</p> <p>The results suggest that interactions between pathogen and host may be driving adaptive change in TLR5 by competition between species. In support of this, we have identified single nucleotide polymorphisms (SNP) in sheep and cattle TLR5 genes that are co-localised and co-incident with the predicted adaptive codons suggesting that adaptation in this region of the TLR5 gene is on-going in domestic species.</p

    TGF-b2 induction regulates invasiveness of theileria-transformed leukocytes and disease susceptibility

    Get PDF
    Theileria parasites invade and transform bovine leukocytes causing either East Coast fever (T. parva), or tropical theileriosis (T. annulata). Susceptible animals usually die within weeks of infection, but indigenous infected cattle show markedly reduced pathology, suggesting that host genetic factors may cause disease susceptibility. Attenuated live vaccines are widely used to control tropical theileriosis and attenuation is associated with reduced invasiveness of infected macrophages in vitro. Disease pathogenesis is therefore linked to aggressive invasiveness, rather than uncontrolled proliferation of Theileria-infected leukocytes. We show that the invasive potential of Theileria-transformed leukocytes involves TGF-b signalling. Attenuated live vaccine lines express reduced TGF-b2 and their invasiveness can be rescued with exogenous TGF-b. Importantly, infected macrophages from disease susceptible Holstein-Friesian (HF) cows express more TGF-b2 and traverse Matrigel with great efficiency compared to those from disease-resistant Sahiwal cattle. Thus, TGF-b2 levels correlate with disease susceptibility. Using fluorescence and time-lapse video microscopy we show that Theileria-infected, disease-susceptible HF macrophages exhibit increased actin dynamics in their lamellipodia and podosomal adhesion structures and develop more membrane blebs. TGF-b2-associated invasiveness in HF macrophages has a transcription-independent element that relies on cytoskeleton remodelling via activation of Rho kinase (ROCK). We propose that a TGF-b autocrine loop confers an amoeboid-like motility on Theileria-infected leukocytes, which combines with MMP-dependent motility to drive invasiveness and virulence

    Sodium Regulation of Agonist Binding at Opioid Receptors. I. Effects of Sodium Replacement on Binding at and #{244}-Type Receptors in 731 5c and NG1 08-15 Cells and Cell Membranes

    Get PDF
    SUMMARY The effects of varying the sodium concentration (at constant ionic strength) on oploid binding at -and #{244}-opioid receptors in 731 5c and NG1 08-1 5 cells has been examined
    corecore