4,220 research outputs found

    Minority Challenge of Majority Actions in a Close Corporation in Italy and the United States

    Get PDF
    This paper addresses the problem of segmenting a time-series with respect to changes in the mean value or in the variance. The first case is when the time data is modeled as a sequence of independent and normal distributed random variables with unknown, possibly changing, mean value but fixed variance. The main assumption is that the mean value is piecewise constant in time, and the task is to estimate the change times and the mean values within the segments. The second case is when the mean value is constant, but the variance can change. The assumption is that the variance is piecewise constant in time, and we want to estimate change times and the variance values within the segments. To find solutions to these problems, we will study an l_1 regularized maximum likelihood method, related to the fused lasso method and l_1 trend filtering, where the parameters to be estimated are free to vary at each sample. To penalize variations in the estimated parameters, the l1l_1-norm of the time difference of the parameters is used as a regularization term. This idea is closely related to total variation denoising. The main contribution is that a convex formulation of this variance estimation problem, where the parametrization is based on the inverse of the variance, can be formulated as a certain l1l_1 mean estimation problem. This implies that results and methods for mean estimation can be applied to the challenging problem of variance segmentation/estimationQC 20140908</p

    A Class of Nonconvex Penalties Preserving Overall Convexity in Optimization-Based Mean Filtering

    Full text link
    β„“1\ell_1 mean filtering is a conventional, optimization-based method to estimate the positions of jumps in a piecewise constant signal perturbed by additive noise. In this method, the β„“1\ell_1 norm penalizes sparsity of the first-order derivative of the signal. Theoretical results, however, show that in some situations, which can occur frequently in practice, even when the jump amplitudes tend to ∞\infty, the conventional method identifies false change points. This issue is referred to as stair-casing problem and restricts practical importance of β„“1\ell_1 mean filtering. In this paper, sparsity is penalized more tightly than the β„“1\ell_1 norm by exploiting a certain class of nonconvex functions, while the strict convexity of the consequent optimization problem is preserved. This results in a higher performance in detecting change points. To theoretically justify the performance improvements over β„“1\ell_1 mean filtering, deterministic and stochastic sufficient conditions for exact change point recovery are derived. In particular, theoretical results show that in the stair-casing problem, our approach might be able to exclude the false change points, while β„“1\ell_1 mean filtering may fail. A number of numerical simulations assist to show superiority of our method over β„“1\ell_1 mean filtering and another state-of-the-art algorithm that promotes sparsity tighter than the β„“1\ell_1 norm. Specifically, it is shown that our approach can consistently detect change points when the jump amplitudes become sufficiently large, while the two other competitors cannot.Comment: Submitted to IEEE Transactions on Signal Processin

    Reweighted nuclear norm regularization: A SPARSEVA approach

    Full text link
    The aim of this paper is to develop a method to estimate high order FIR and ARX models using least squares with re-weighted nuclear norm regularization. Typically, the choice of the tuning parameter in the reweighting scheme is computationally expensive, hence we propose the use of the SPARSEVA (SPARSe Estimation based on a VAlidation criterion) framework to overcome this problem. Furthermore, we suggest the use of the prediction error criterion (PEC) to select the tuning parameter in the SPARSEVA algorithm. Numerical examples demonstrate the veracity of this method which has close ties with the traditional technique of cross validation, but using much less computations.Comment: This paper is accepted and will be published in The Proceedings of the 17th IFAC Symposium on System Identification (SYSID 2015), Beijing, China, 201
    • …
    corecore