38,997 research outputs found

    One way Doppler extractor. Volume 1: Vernier technique

    Get PDF
    A feasibility analysis, trade-offs, and implementation for a One Way Doppler Extraction system are discussed. A Doppler error analysis shows that quantization error is a primary source of Doppler measurement error. Several competing extraction techniques are compared and a Vernier technique is developed which obtains high Doppler resolution with low speed logic. Parameter trade-offs and sensitivities for the Vernier technique are analyzed, leading to a hardware design configuration. A detailed design, operation, and performance evaluation of the resulting breadboard model is presented which verifies the theoretical performance predictions. Performance tests have verified that the breadboard is capable of extracting Doppler, on an S-band signal, to an accuracy of less than 0.02 Hertz for a one second averaging period. This corresponds to a range rate error of no more than 3 millimeters per second

    Clusters and Fluctuations at Mean-Field Critical Points and Spinodals

    Full text link
    We show that the structure of the fluctuations close to spinodals and mean-field critical points is qualitatively different than the structure close to non-mean-field critical points. This difference has important implications for many areas including the formation of glasses in supercooled liquids. In particular, the divergence of the measured static structure function in near-mean-field systems close to the glass transition is suppressed relative to the mean-field prediction in systems for which a spatial symmetry is broken.Comment: 5 pages, 1 figur

    Particle-scale structure in frozen colloidal suspensions from small angle X-ray scattering

    Get PDF
    During directional solidification of the solvent in a colloidal suspension, the colloidal particles segregate from the growing solid, forming high-particle-density regions with structure on a hierarchy of length scales ranging from that of the particle-scale packing to the large-scale spacing between these regions. Previous work has mostly concentrated on the medium- to large-length scale structure, as it is the most accessible and thought to be more technologically relevant. However, the packing of the colloids at the particle-scale is an important component not only in theoretical descriptions of the segregation process, but also to the utility of freeze-cast materials for new applications. Here we present the results of experiments in which we investigated this structure across a wide range of length scales using a combination of small angle X-ray scattering and direct optical imaging. As expected, during freezing the particles were concentrated into regions between ice dendrites forming a microscopic pattern of high- and low-particle-density regions. X-ray scattering indicates that the particles in the high density regions were so closely packed as to be touching. However, the arrangement of the particles does not conform to that predicted by any standard inter-particle pair potentials, suggesting that the particle packing induced by freezing differs from that formed during equilibrium or steady-state densification processes

    First observations of beam losses due to bound-free pair production in a heavy-ion collider

    Get PDF
    We report the first observations of beam losses due to bound-free pair production at the interaction point of a heavy-ion collider. This process is expected to be a major luminosity limit for the Large Hadron Collider (LHC) when it operates with 208Pb82+ ions because the localized energy deposition by the lost ions may quench superconducting magnet coils. Measurements were performed at the Relativistic Heavy Ion Collider (RHIC) during operation with 100 GeV/nucleon 63Cu29+ ions. At RHIC, the rate, energy and magnetic field are low enough so that magnet quenching is not an issue. The hadronic showers produced when the single-electron ions struck the RHIC beampipe were observed using an array of photodiodes. The measurement confirms the order of magnitude of the theoretical cross section previously calculated by others.Comment: 4 pages, 5 figures. Added journal ref. Corrected typos. Fixed fig 1. Minor improvements to fig. 1,3,4. Rephrased a small number of sentences (p1,3,4). Added numerical values of the aperture and the displacement for Au (p 2). Changed reference 5, added name in acknowledgments (p 4

    Forces between functionalized silica nanoparticles in solution

    Full text link
    To prevent the flocculation and phase separation of nanoparticles in solution, nanoparticles are often functionalized with short chain surfactants. Here we present fully-atomistic molecular dynamics simulations which characterize how these functional coatings affect the interactions between nanoparticles and with the surrounding solvent. For 5 nm diameter silica nanoparticles coated with poly(ethylene oxide) (PEO) oligomers in water, we determined the hydrodynamic drag on two approaching nanoparticles moving through solvent and on a single nanoparticle as it approaches a planar surface. In most circumstances, acroscale fluid theory accurately predicts the drag on these nano-scale particles. Good agreement is seen with Brenner's analytical solutions for wall separations larger than the soft nanoparticle radius. For two approaching coated nanoparticles, the solvent-mediated (velocity-independent) and lubrication (velocity-dependent) forces are purely repulsive and do not exhibit force oscillations that are typical of uncoated rigid spheres.Comment: 4 pages, 3 fig

    25 kHz narrow spectral bandwidth of a wavelength tunable diode laser with a short waveguide-based external cavity

    Get PDF
    We report on the spectral properties of a diode laser with a tunable external cavity in integrated optics. Even though the external cavity is short compared to other small-bandwidth external cavity lasers, the spectral bandwidth of this tunable laser is as small as 25 kHz (FWHM), at a side-mode suppression ratio (SMSR) of 50 dB. Our laser is also able to access preset wavelengths in as little as 200 us and able to tune over the full telecom C-band (1530 nm - 1565 nm).Comment: 8 pages, 7 figure

    An atom fiber for guiding cold neutral atoms

    Full text link
    We present an omnidirectional matter wave guide on an atom chip. The rotational symmetry of the guide is maintained by a combination of two current carrying wires and a bias field pointing perpendicular to the chip surface. We demonstrate guiding of thermal atoms around more than two complete turns along a spiral shaped 25mm long curved path (curve radii down to 200μ\mum) at various atom--surface distances (35-450μ\mum). An extension of the scheme for the guiding of Bose-Einstein condensates is outlined

    Two Gap State Density in MgB2_{2}: A True Bulk Property or A Proximity Effect?

    Full text link
    We report on the temperature dependence of the quasiparticle density of states (DOS) in the simple binary compound MgB2 directly measured using scanning tunneling microscope (STM). To achieve high quality tunneling conditions, a small crystal of MgB2 is used as a tip in the STM experiment. The ``sample'' is chosen to be a 2H-NbSe2 single crystal presenting an atomically flat surface. At low temperature the tunneling conductance spectra show a gap at the Fermi energy followed by two well-pronounced conductance peaks on each side. They appear at voltages VS±3.8_{S}\simeq \pm 3.8 mV and VL±7.8_{L}\simeq \pm 7.8 mV. With rising temperature both peaks disappear at the Tc of the bulk MgB2, a behavior consistent with the model of two-gap superconductivity. The explanation of the double-peak structure in terms of a particular proximity effect is also discussed.Comment: 4 pages, 3 figure

    Trapping and manipulating neutral atoms with electrostatic fields

    Full text link
    We report on experiments with cold thermal 7^7Li atoms confined in combined magnetic and electric potentials. A novel type of three-dimensional trap was formed by modulating a magnetic guide using electrostatic fields. We observed atoms trapped in a string of up to six individual such traps, a controlled transport of an atomic cloud over a distance of 400μ\mum, and a dynamic splitting of a single trap into a double well potential. Applications for quantum information processing are discussed.Comment: 4 pages, 4 figure

    Foundations of self-consistent particle-rotor models and of self-consistent cranking models

    Get PDF
    The Kerman-Klein formulation of the equations of motion for a nuclear shell model and its associated variational principle are reviewed briefly. It is then applied to the derivation of the self-consistent particle-rotor model and of the self-consistent cranking model, for both axially symmetric and triaxial nuclei. Two derivations of the particle-rotor model are given. One of these is of a form that lends itself to an expansion of the result in powers of the ratio of single-particle angular momentum to collective angular momentum, that is essentual to reach the cranking limit. The derivation also requires a distinct, angular-momentum violating, step. The structure of the result implies the possibility of tilted-axis cranking for the axial case and full three-dimensional cranking for the triaxial one. The final equations remain number conserving. In an appendix, the Kerman-Klein method is developed in more detail, and the outlines of several algorithms for obtaining solutions of the associated non-linear formalism are suggested.Comment: 29 page
    corecore