8,386 research outputs found

    The Chern-Simons Coefficient in Supersymmetric Non-abelian Chern-Simons Higgs Theories

    Get PDF
    By taking into account the effect of the would be Chern-Simons term, we calculate the quantum correction to the Chern-Simons coefficient in supersymmetric Chern-Simons Higgs theories with matter fields in the fundamental representation of SU(n). Because of supersymmetry, the corrections in the symmetric and Higgs phases are identical. In particular, the correction is vanishing for N=3 supersymmetric Chern-Simons Higgs theories. The result should be quite general, and have important implication for the more interesting case when the Higgs is in the adjoint representation.Comment: more references and explanation about rgularization dpendence are included, 13 pages, 1 figure, latex with revte

    Communications platform payload definition study, executive summary

    Get PDF
    Large geostationary communications platforms have been investigated in a number of studies since 1974 as a possible means to more effectively utilize the geostationary orbital arc and electromagnetic spectrum and to reduce overall satellite communications system costs. This NASA Lewis sponsored study addresses the commercial feasibility of various communications platform payload concepts circa 1998. It defines promising payload concepts, estimates recurring costs and identifies critical technologies needed to permit eventual commercialization. Ten communications service aggregation scenarios describing potential groupings of services were developed for a range of conditions. Payload concepts were defined for four of these scenarios: (1) Land Mobile Satellite Service (LMSS), meet 100% of CONUS plus Canada demand with a single platform; (2) Fixed Satellite Service (FSS) (Trunking + Customer Premises Service (CPS), meet 20% of CONUS demands; (3) FSS (Trunking + video distribution), 10 to 13% of CONUS demand; and (4) FSS (20% of demand) + Inter Satellite Links (ISL) + TDRSS/TDAS Data Distribution

    Kaluza-Klein Induced Gravity Inflation

    Full text link
    A D-dimensional induced gravity theory is studied carefully in a 4+(D−4)4 + (D-4) dimensional Friedmann-Robertson-Walker space-time. We try to extract information of the symmetry breaking potential in search of an inflationary solution with non-expanding internal-space. We find that the induced gravity model imposes strong constraints on the form of symmetry breaking potential in order to generate an acceptable inflationary universe. These constraints are analyzed carefully in this paper.Comment: 10 pages, title changed, corrected some typos, two additional comments adde

    A metapopulation model for highly pathogenic avian influenza: implications for compartmentalization as a control measure

    Get PDF
    Although the compartmentalization of poultry industry components has substantial economic implications, and is therefore a concept with huge significance to poultry industries worldwide, the current requirements for compartment status are generic to all OIE member countries. We examined the consequences for potential outbreaks of highly pathogenic avian influenza in the British poultry industry using a metapopulation modelling framework. This framework was used to assess the effectiveness of compartmentalization relative to zoning control, utilizing empirical data to inform the structure of potential epidemiological contacts within the British poultry industry via network links and spatial proximity. Conditions were identified where, despite the efficient isolation of poultry compartments through the removal of network-mediated links, spatially mediated airborne spread enabled spillover of infection with nearby premises making compartmentalization a more ‘risky’ option than zoning control. However, when zoning control did not effectively inhibit long-distance network links, compartmentalization became a relatively more effective control measure than zoning. With better knowledge of likely distance ranges for airborne spread, our approach could help define an appropriate minimum inter-farm distance to provide more specific guidelines for compartmentalization in Great Britain

    Inflationary Universe in Higher Derivative Induced Gravity

    Get PDF
    In an induced-gravity model, the stability condition of an inflationary slow-rollover solution is shown to be ϕ0∂ϕ0V(ϕ0)=4V(ϕ0)\phi_0 \partial_{\phi_0}V(\phi_0)=4V(\phi_0). The presence of higher derivative terms will, however, act against the stability of this expanding solution unless further constraints on the field parameters are imposed. We find that these models will acquire a non-vanishing cosmological constant at the end of inflation. Some models are analyzed for their implication to the early universe.Comment: 6 pages, two typos correcte

    Vacancy-Induced Low-Energy Density of States in the Kitaev Spin Liquid

    Get PDF
    The Kitaev honeycomb model has attracted significant attention due to its exactly solvable spin-liquid ground state with fractionalized Majorana excitations and its possible materialization in magnetic Mott insulators with strong spin-orbit couplings. Recently, the 5d-electron compound H3LiIr2O6 has shown to be a strong candidate for Kitaev physics considering the absence of any signs of a long-range ordered magnetic state. In this work, we demonstrate that a finite density of random vacancies in the Kitaev model gives rise to a striking pileup of low-energy Majorana eigenmodes and reproduces the apparent power-law upturn in the specific heat measurements of H3LiIr2O6. Physically, the vacancies can originate from various sources such as missing magnetic moments or the presence of nonmagnetic impurities (true vacancies), or from local weak couplings of magnetic moments due to strong but rare bond randomness (quasivacancies). We show numerically that the vacancy effect is readily detectable even at low vacancy concentrations and that it is not very sensitive either to the nature of vacancies or to different flux backgrounds. We also study the response of the site-diluted Kitaev spin liquid to the three-spin interaction term, which breaks time-reversal symmetry and imitates an external magnetic field. We propose a field-induced flux-sector transition where the ground state becomes flux-free for larger fields, resulting in a clear suppression of the low-temperature specific heat. Finally, we discuss the effect of dangling Majorana fermions in the case of true vacancies and show that their coupling to an applied magnetic field via the Zeeman interaction can also account for the scaling behavior in the high-field limit observed in H3LiIr2O6

    Kaluza-Klein Higher Derivative Induced Gravity

    Get PDF
    The existence and stability analysis of an inflationary solution in a D+4D+4-dimensional anisotropic induced gravity is presented in this paper. Nontrivial conditions in the field equations are shown to be compatible with a cosmological model in which the 4-dimension external space evolves inflationary, while, the D-dimension internal one is static. In particular, only two additional constraints on the coupling constants are derived from the abundant field equations and perturbation equations. In addition, a compact formula for the non-redundant 4+D dimensional Friedmann equation is also derived for convenience. Possible implications are also discussed in this paper.Comment: 13 pages, typos/errors corrected, three additional appendices adde

    Herd-level bovine tuberculosis risk factors:assessing the role of low-level badger population disturbance

    Get PDF
    Bovine TB (bTB) is endemic in Irish cattle and has eluded eradication despite considerable expenditure, amid debate over the relative roles of badgers and cattle in disease transmission. Using a comprehensive dataset from Northern Ireland (>10,000 km2; 29,513 cattle herds), we investigated interactions between host populations in one of the first large-scale risk factor analyses for new herd breakdowns to combine data on both species. Cattle risk factors (movements, international imports, bTB history, neighbours with bTB) were more strongly associated with herd risk than area-level measures of badger social group density, habitat suitability or persecution (sett disturbance). Highest risks were in areas of high badger social group density and high rates of persecution, potentially representing both responsive persecution of badgers in high cattle risk areas and effects of persecution on cattle bTB risk through badger social group disruption. Average badger persecution was associated with reduced cattle bTB risk (compared with high persecution areas), so persecution may contribute towards sustaining bTB hotspots; findings with important implications for existing and planned disease control programmes
    • 

    corecore