1,352 research outputs found

    Experimental X-ray Stress Analysis Procedures for Ultra High Strength Materials

    Get PDF
    X-ray stress analysis procedures for accurate measurement of elastic strain in high strength steel

    Fgf signaling is required for zebrafish tooth development

    Get PDF
    We have investigated fibroblast growth factor (FGF) signaling during the development of the zebrafish pharyngeal dentition with the goal of uncovering novel roles for FGFs in tooth development as well as phylogenetic and topographic diversity in the tooth developmental pathway. We found that the tooth-related expression of several zebrafish genes is similar to that of their mouse orthologs, including both epithelial and mesenchymal markers. Additionally, significant differences in gene expression between zebrafish and mouse teeth are indicated by the apparent lack of fgf8 and pax9 expression in zebrafish tooth germs. FGF receptor inhibition with SU5402 at 32 h blocked dental epithelial morphogenesis and tooth mineralization. While the pharyngeal epithelium remained intact as judged by normal pitx2 expression, not only was the mesenchymal expression of lhx6 and lhx7 eliminated as expected from mouse studies, but the epithelial expression of dlx2a, dlx2b, fgf3, and fgf4 was as well. This latter result provides novel evidence that the dental epithelium is a target of FGF signaling. However, the failure of SU5402 to block localized expression of pitx2 suggests that the earliest steps of tooth initiation are FGF-independent. Investigations of specific FGF ligands with morpholino antisense oligonucleotides revealed only a mild tooth shape phenotype following fgf4 knockdown, while fgf8 inhibition revealed only a subtle down-regulation of dental dlx2b expression with no apparent effect on tooth morphology. Our results suggest redundant FGF signals target the dental epithelium and together are required for dental morphogenesis. Further work will be required to elucidate the nature of these signals, particularly with respect to their origins and whether they act through the mesenchyme. © 2004 Elsevier Inc. All rights reserved

    Hedgehog signaling is required at multiple stages of zebrafish tooth development

    Get PDF
    Background. The accessibility of the developing zebrafish pharyngeal dentition makes it an advantageous system in which to study many aspects of tooth development from early initiation to late morphogenesis. In mammals, hedgehog signaling is known to be essential for multiple stages of odontogenesis; however, potential roles for the pathway during initiation of tooth development or in later morphogenesis are incompletely understood. Results. We have identified mRNA expression of the hedgehog ligands shha and the receptors ptc1 and ptc2 during zebrafish pharyngeal tooth development. We looked for, but did not detect, tooth germ expression of the other known zebrafish hedgehog ligands shhb, dhh, ihha, or ihhb, suggesting that as in mammals, only Shh participates in zebrafish tooth development. Supporting this idea, we found that morphological and gene expression evidence of tooth initiation is eliminated in shha mutant embryos, and that morpholino antisense oligonucleotide knockdown of shha, but not shhb, function prevents mature tooth formation. Hedgehog pathway inhibition with the antagonist compound cyclopamine affected tooth formation at each stage in which we applied it: arresting development at early stages and disrupting mature tooth morphology when applied later. These results suggest that hedgehog signaling is required continuously during odontogenesis. In contrast, over-expression of shha had no effect on the developing dentition, possibly because shha is normally extensively expressed in the zebrafish pharyngeal region. Conclusion. We have identified previously unknown requirements for hedgehog signaling for early tooth initiation and later morphogenesis. The similarity of our results with data from mouse and other vertebrates suggests that despite gene duplication and changes in the location of where teeth form, the roles of hedgehog signaling in tooth development have been largely conserved during evolution. © 2010 Jackman et al; licensee BioMed Central Ltd

    Simultaneous conduction and valence band quantisation in ultra-shallow, high density doping profiles in semiconductors

    Full text link
    We demonstrate simultaneous quantisation of conduction band (CB) and valence band (VB) states in silicon using ultra-shallow, high density, phosphorus doping profiles (so-called Si:P δ\delta-layers). We show that, in addition to the well known quantisation of CB states within the dopant plane, the confinement of VB-derived states between the sub-surface P dopant layer and the Si surface gives rise to a simultaneous quantisation of VB states in this narrow region. We also show that the VB quantisation can be explained using a simple particle-in-a-box model, and that the number and energy separation of the quantised VB states depend on the depth of the P dopant layer beneath the Si surface. Since the quantised CB states do not show a strong dependence on the dopant depth (but rather on the dopant density), it is straightforward to exhibit control over the properties of the quantised CB and VB states independently of each other by choosing the dopant density and depth accordingly, thus offering new possibilities for engineering quantum matter.Comment: 5 pages, 2 figures and supplementary materia

    Ethical and compliance-competence evaluation: a key element of sound corporate governance

    Get PDF
    Motivated by the ongoing post-Enron refocusing on corporate governance and the shift by the Financial Services Authority (FSA) in the UK to promoting compliance- competence within the financial services sector, this paper demonstrates how template analysis can be used as a tool for evaluating compliance-competence. Focusing on the ethical dimension of compliance-competence, we illustrate how this can be subjectively appraised. We propose that this evaluation technique could be utilised as a starting point in informing senior management of corporate governance issues and be used to monitor and demonstrate key compliance and ethical aspects of an institution to external stakeholders and regulators

    Spatial Heterogeneity in the Abundance and Fecundity of Arctic Mosquitoes

    Get PDF
    The abundance of mosquitoes is strongly influenced by biotic and abiotic factors that act on the immature (aquatic) and adult (terrestrial) life stages. Rapid changes in land use and climate, which impact aquatic and terrestrial mosquito habitat, necessitate studying the ecological mechanisms, and their interplay with the changing environment, that affect mosquito abundance. These data are crucial for anticipating how environmental change will impact their roles as pests, disease vectors, and in food webs. We studied a population of Arctic mosquitoes (Aedes nigripes, Diptera: Culicidae) in western Greenland, a region experiencing rapid environmental change, to quantify spatial variation in adult abundance and reproduction. Using sweep nets, we collected about sevenfold more mosquitoes within the town of Kangerlussuaq and within a low‐elevation tundra valley compared to three other tundra locations. Dissections of adult female mosquitoes revealed that only 17% were gravid overall, with a range of 7–43% among sites. If gravid, mosquitoes matured an average of 60 eggs per individual—more in larger females. We found no indication of autogenous egg development. Analyses using our field data indicated that spatial variation in adult fecundity and survival of immatures could each account for a 10‐fold range in the per capita growth of mosquito populations. The availability of vertebrate hosts and aquatic habitat is changing in many parts of the Arctic and can be expected to influence Arctic mosquito abundance. In the Arctic, and elsewhere, life‐history data from natural populations of mosquitoes will significantly aid in understanding controls on the abundance of these globally ubiquitous insects

    Deoxyuridine triphosphatase (dUTPase) expression and sensitivity to the thymidylate synthase (TS) inhibitorD9331

    Get PDF
    Uracil DNA misincorporation and misrepair of DNA have been recognized as important events accompanying thymidylate synthase (TS) inhibition. dUTPase catalyses the hydrolysis of dUTP to dUMP, thereby maintaining low intracellular dUTP. We have addressed the relationship between dUTPase expression and cellular sensitivity to TS inhibition in four human lung tumour cell lines. Sensitivity (5-day MTT assay) to the growth inhibitory effects of the non-polyglutamatable, specific quinazoline TS inhibitor ZD9331, varied up to 20-fold (IC 50 3–70 nM). TS protein expression correlated with TS activity (r2= 0.88 P= 0.05). Intracellular concentrations of drug following exposure to ZD9331 (1 μM, 24 h) varied by ~2-fold and dTTP pools decreased by > 80% in all cell lines. No clear associations across the cell lines between intracellular drug concentrations, TS activity/expression, or TTP depletion could be made. dUTPase activity varied 17-fold and correlated with dUTPase protein expression (r2= 0.94 P= 0.03). There was a striking variation in the amount of dUTP formed following exposure to ZD9331 (between 1.3 and 57 pmole 10–6cells) and was in general inversely associated with dUTPase activity. A large expansion in the dUTP pool was associated with increased sensitivity to a 24-h exposure to ZD9331 in A549 cells that have low dUTPase activity/expression. dUTPase expression and activity were elevated (approximately 3-fold) in two variants of a human lymphoblastoid cell line with acquired resistance to TS inhibitors, further suggesting an important role for this enzyme in TS inhibited cells. © 2000 Cancer Research Campaig

    Middle Atmosphere Response to Different Descriptions of the 11-Year Solar Cycle in Spectral Irradiance in a Chemistry-Climate Model

    Get PDF
    The 11-year solar cycle in solar spectral irradiance (SSI) inferred from measurements by the SOlar Radiation & Climate Experiment (SORCE) suggests a much larger variation in the ultraviolet than previously accepted. We present middle atmosphere ozone and temperature responses to the solar cycles in SORCE SSI and the ubiquitous Naval Research Laboratory (NRL) SSI reconstruction using the Goddard Earth Observing System chemistry-climate model (GEOS CCM). The results are largely consistent with other recent modeling studies. The modeled ozone response is positive throughout the stratosphere and lower mesosphere using the NRL SSI, while the SORCE SSI produces a response that is larger in the lower stratosphere but out of phase with respect to total solar irradiance above 45 km. The modeled responses in total ozone are similar to those derived from satellite and ground-based measurements, 3-6 Dobson Units per 100 units of 10.7-cm radio flux (F10.7) in the tropics. The peak zonal mean tropical temperature response 50 using the SORCE SSI is nearly 2 K per 100 units 3 times larger than the simulation using the NRL SSI. The GEOS CCM and the Goddard Space Flight Center (GSFC) 2-D coupled model are used to examine how the SSI solar cycle affects the atmosphere through direct solar heating and photolysis processes individually. Middle atmosphere ozone is affected almost entirely through photolysis, whereas the solar cycle in temperature is caused both through direct heating and photolysis feedbacks, processes that are mostly linearly separable. Further, the net ozone response results from the balance of ozone production at wavelengths less than 242 nm and destruction at longer wavelengths, coincidentally corresponding to the wavelength regimes of the SOLar STellar Irradiance Comparison Experiment (SOLSTICE) and Spectral Irradiance Monitor (SIM) on SORCE, respectively. A higher wavelength-resolution analysis of the spectral response could allow for a better prediction of the atmospheric response to arbitrary SSI variations

    Options to Accelerate Ozone Recovery: Ozone and Climate Benefits

    Get PDF
    The humankind or anthropogenic influence on ozone primarily originated from the chlorofluorocarbons and halons (chlorine and bromine). Representatives from governments have met periodically over the years to establish international regulations starting with the Montreal Protocol in 1987, which greatly limited the release of these ozone-depleting substances (DDSs). Two global models have been used to investigate the impact of hypothetical reductions in future emissions of ODSs on total column ozone. The investigations primarily focused on chlorine- and bromine-containing gases, but some computations also included nitrous oxide (N2O). The Montreal Protocol with ODS controls have been so successful that further regulations of chlorine- and bromine-containing gases could have only a fraction of the impact that regulations already in force have had. if all anthropogenic ODS emissions were halted beginning in 2011, ozone is calculated to be higher by about 1-2% during the period 2030-2100 compared to a case of no additional ODS restrictions. Chlorine- and bromine-containing gases and nitrous oxide are also greenhouse gases and lead to warming of the troposphere. Elimination of N 20 emissions would result in a reduction of radiative forcing of 0.23 W/sq m in 2100 than presently computed and destruction of the CFC bank would produce a reduction in radiative forcing of 0.005 W/sq m in 2100. This paper provides a quantitative way to consider future regulations of the CFC bank and N 20 emission
    corecore