1,457 research outputs found

    Huge Seebeck coefficients in non-aqueous electrolytes

    Full text link
    The Seeebeck coefficients of the non-aqueous electrolytes tetrabutylammonium nitrate, tetraoctylphosphonium bromide and tetradodecylammonium nitrate in 1-octanol, 1-dodecanol and ethylene-glycol are measured in a temperature range from T=30 to T=45 C. The Seebeck coefficient is generally of the order of a few hundreds of microvolts per Kelvin for aqueous solution of inorganic ions. Here we report huge values of 7 mV/K at 0.1M concentration for tetrabutylammonium nitrate in 1-dodecanol. These striking results open the question of unexpectedly large kosmotrope or "structure making" effects of tetraalkylammonium ions on the structure of alcohols.Comment: Submitted to J. Chem. Phy

    Thermodynamic behaviour and structural properties of an aqueous sodium chloride solution upon supercooling

    Full text link
    We present the results of a molecular dynamics simulation study of thermodynamic and structural properties upon supercooling of a low concentration sodium chloride solution in TIP4P water and the comparison with the corresponding bulk quantities. We study the isotherms and the isochores for both the aqueous solution and bulk water. The comparison of the phase diagrams shows that thermodynamic properties of the solution are not merely shifted with respect to the bulk. Moreover, from the analysis of the thermodynamic curves, both the spinodal line and the temperatures of maximum density curve can be calculated. The spinodal line appears not to be influenced by the presence of ions at the chosen concentration, while the temperatures of maximum density curve displays both a mild shift in temperature and a shape modification with respect to bulk. Signatures of the presence of a liquid-liquid critical point are found in the aqueous solution. By analysing the water-ion radial distribution functions of the aqueous solution we observe that upon changing density, structural modifications appear close to the spinodal. For low temperatures additional modifications appear also for densities close to that corresponding to a low density configurational energy minimum.Comment: 10 pages, 13 figures, 2 tables. To be published in J. Chem. Phy

    Comment on “Fracture resistance of paper”

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44667/1/10853_2004_Article_BF00541421.pd

    Modified two-potential approach to tunneling problems

    Get PDF
    One-body quantum tunneling to continuum is treated via the two-potential approach, dividing the tunneling potential into external and internal parts. We show that corrections to this approach can be minimized by taking the separation radius inside the interval determined by simple expressions. The resulting two-potential approach reproduces the resonance energy and its width, both for narrow and wide resonances. We also demonstrate that, without losing its accuracy, the two-potential approach can be modified to a form resembling the R-matrix theory, yet without any uncertainties of the latter related to the choice of the matching radius.Comment: 7 two-column pages, 3 figures, extra-explanation added, Phys. Rev. A, in pres

    Spatiotemporal complexity of a ratio-dependent predator-prey system

    Full text link
    In this paper, we investigate the emergence of a ratio-dependent predator-prey system with Michaelis-Menten-type functional response and reaction-diffusion. We derive the conditions for Hopf, Turing and Wave bifurcation on a spatial domain. Furthermore, we present a theoretical analysis of evolutionary processes that involves organisms distribution and their interaction of spatially distributed population with local diffusion. The results of numerical simulations reveal that the typical dynamics of population density variation is the formation of isolated groups, i.e., stripelike or spotted or coexistence of both. Our study shows that the spatially extended model has not only more complex dynamic patterns in the space, but also chaos and spiral waves. It may help us better understand the dynamics of an aquatic community in a real marine environment.Comment: 6pages, revtex

    Critical view of WKB decay widths

    Full text link
    A detailed comparison of the expressions for the decay widths obtained within the semiclassical WKB approximation using different approaches to the tunneling problem is performed. The differences between the available improved formulae for tunneling near the top and the bottom of the barrier are investigated. Though the simple WKB method gives the right order of magnitude of the decay widths, a small number of parameters are often fitted. The need to perform the fitting procedure remaining consistently within the WKB framework is emphasized in the context of the fission model based calculations. Calculations for the decay widths of some recently found super heavy nuclei using microscopic alpha-nucleus potentials are presented to demonstrate the importance of a consistent WKB calculation. The half-lives are found to be sensitive to the density dependence of the nucleon-nucleon interaction and the implementation of the Bohr-Sommerfeld quantization condition inherent in the WKB approach.Comment: 18 pages, Late

    Chaos induced coherence in two independent food chains

    Full text link
    Coherence evolution of two food web models can be obtained under the stirring effect of chaotic advection. Each food web model sustains a three--level trophic system composed of interacting predators, consumers and vegetation. These populations compete for a common limiting resource in open flows with chaotic advection dynamics. Here we show that two species (the top--predators) of different colonies chaotically advected by a jet--like flow can synchronize their evolution even without migration interaction. The evolution is charaterized as a phase synchronization. The phase differences (determined through the Hilbert transform) of the variables representing those species show a coherent evolution.Comment: 5 pages, 5 eps figures. Accepted for publication in Phys. Rev.

    Stochastic models in population biology and their deterministic analogs

    Full text link
    In this paper we introduce a class of stochastic population models based on "patch dynamics". The size of the patch may be varied, and this allows one to quantify the departures of these stochastic models from various mean field theories, which are generally valid as the patch size becomes very large. These models may be used to formulate a broad range of biological processes in both spatial and non-spatial contexts. Here, we concentrate on two-species competition. We present both a mathematical analysis of the patch model, in which we derive the precise form of the competition mean field equations (and their first order corrections in the non-spatial case), and simulation results. These mean field equations differ, in some important ways, from those which are normally written down on phenomenological grounds. Our general conclusion is that mean field theory is more robust for spatial models than for a single isolated patch. This is due to the dilution of stochastic effects in a spatial setting resulting from repeated rescue events mediated by inter-patch diffusion. However, discrete effects due to modest patch sizes lead to striking deviations from mean field theory even in a spatial setting.Comment: 47 pages, 9 figure
    • …
    corecore