16,611 research outputs found
The Exact Ground State of the Frenkel-Kontorova Model with Repeated Parabolic Potential: II. Numerical Treatment
A procedure is described for efficiently finding the ground state energy and
configuration for a Frenkel-Kontorova model in a periodic potential, consisting
of N parabolic segments of identical curvature in each period, through a
numerical solution of the convex minimization problem described in the
preceding paper. The key elements are the use of subdifferentials to describe
the structure of the minimization problem; an intuitive picture of how to solve
it, based on motion of quasiparticles; and a fast linear optimization method
with a reduced memory requirement. The procedure has been tested for N up to
200.Comment: 9 RevTeX pages, using AMS-Fonts (amssym.tex,amssym.def), 3 Postscript
figures, accepted by Phys.Rev.B to be published together with
cond-mat/970722
Optimal Eavesdropping in Quantum Cryptography. II. Quantum Circuit
It is shown that the optimum strategy of the eavesdropper, as described in
the preceding paper, can be expressed in terms of a quantum circuit in a way
which makes it obvious why certain parameters take on particular values, and
why obtaining information in one basis gives rise to noise in the conjugate
basis.Comment: 7 pages, 1 figure, Latex, the second part of quant-ph/970103
Constraints on the distance to SGR 1806-20 from HI absorption
The giant flare detected from the magnetar SGR 1806-20 on 2004 December 27
had a fluence more than 100 times higher than the only two other SGR flares
ever recorded. Whereas the fluence is independent of distance, an estimate for
the luminosity of the burst depends on the source's distance, which has
previously been argued to be ~15 kpc. The burst produced a bright radio
afterglow, against which Cameron et al. (2005) have measured an HI absorption
spectrum. This has been used to propose a revised distance to SGR 1806-20 of
between 6.4 and 9.8 kpc. Here we analyze this absorption spectrum, and compare
it both to HI emission data from the Southern Galactic Plane Survey and to
archival 12-CO survey data. We confirm ~6 kpc, as a likely lower limit on the
distance to SGR 1806-20, but argue that it is difficult to place an upper limit
on the distance to SGR 1806-20 from the HI data currently available. The
previous value of ~15 kpc thus remains the best estimate of the distance to the
source.Comment: 3 pages, 1 embedded EPS figure. Added sentences to end of Abstract
and Conclusion, clarifying that most likely distance is 15 kpc. ApJ Letters,
in pres
A physical distinction between a covariant and non covariant reduction process in relativistic quantum theories
Causality imposes strong restrictions on the type of operators that may be
observables in relativistic quantum theories. In fact, causal violations arise
when computing conditional probabilities for certain partial causally connected
measurements using the standard non covariant procedure. Here we introduce
another way of computing conditional probabilities, based on an intrinsic
covariant relational order of the events, which differs from the standard one
when these type of measurements are included. This alternative procedure is
compatible with a wider and very natural class of operators without breaking
causality. If some of these measurements could be implemented in practice as
predicted by our formalism, the non covariant, conventional approach should be
abandoned. Furthermore, the description we promote here would imply a new
physical effect where interference terms are suppressed as a consequence of the
covariant order in the measurement process.Comment: 7 pages, latex file, 1 ps figure. Major presentation changes. To
appear in New Journal of Physic
Classical Dynamics of the Quantum Harmonic Chain
The origin of classical predictability is investigated for the one
dimensional harmonic chain considered as a closed quantum mechanical system. By
comparing the properties of a family of coarse-grained descriptions of the
chain, we conclude that local coarse-grainings in this family are more useful
for prediction than nonlocal ones. A quantum mechanical system exhibits
classical behavior when the probability is high for histories having the
correlations in time implied by classical deterministic laws. But approximate
classical determinism holds only for certain coarse-grainings and then only if
the initial state of the system is suitably restricted. Coarse-grainings by the
values of the hydrodynamic variables (integrals over suitable volumes of
densities of approximately conserved quantities) define the histories usually
used in classical physics. But what distinguishes this coarse-graining from
others? This paper approaches this question by analyzing a family of
coarse-grainings for the linear harmonic chain. At one extreme in the family
the chain is divided into local groups of atoms. At the other extreme the
atoms are distributed nonlocally over the whole chain. Each coarse-graining
follows the average (center of mass) positions of the groups and ignores the
``internal'' coordinates within each group, these constituting a different
environment for each coarse-graining. We conclude that noise, decoherence, and
computational complexity favor locality over nonlocality for deterministic
predictability.Comment: 38 pages RevTeX 3.0 + 4 figures (postscript). Numerous minor
corrections. Submitted to Physical Review
Impulsive spherical gravitational waves
Penrose's identification with warp provides the general framework for
constructing the continuous form of impulsive gravitational wave metrics. We
present the 2-component spinor formalism for the derivation of the full family
of impulsive spherical gravitational wave metrics which brings out the power in
identification with warp and leads to the simplest derivation of exact
solutions. These solutions of the Einstein vacuum field equations are obtained
by cutting Minkowski space into two pieces along a null cone and re-identifying
them with warp which is given by an arbitrary non-linear holomorphic
transformation. Using 2-component spinor techniques we construct a new metric
describing an impulsive spherical gravitational wave where the vertex of the
null cone lies on a world-line with constant acceleration
Ultra-fine beryllium powder by amalgam process Progress report, period ending 31 Oct. 1966
Metallurgical evaluation of beryllium powdered metal, and electron microscope studies of agglomerate particle size
The Einstein static universe with torsion and the sign problem of the cosmological constant
In the field equations of Einstein-Cartan theory with cosmological constant a
static spherically symmetric perfect fluid with spin density satisfying the
Weyssenhoff restriction is considered. This serves as a rough model of space
filled with (fermionic) dark matter. From this the Einstein static universe
with constant torsion is constructed, generalising the Einstein Cosmos to
Einstein-Cartan theory.
The interplay between torsion and the cosmological constant is discussed. A
possible way out of the cosmological constant's sign problem is suggested.Comment: 8 pages, LaTeX; minor layout changes, typos corrected, one new
equation, new reference [5], completed reference [13], two references adde
Two qubit copying machine for economical quantum eavesdropping
We study the mapping which occurs when a single qubit in an arbitrary state
interacts with another qubit in a given, fixed state resulting in some unitary
transformation on the two qubit system which, in effect, makes two copies of
the first qubit. The general problem of the quality of the resulting copies is
discussed using a special representation, a generalization of the usual Schmidt
decomposition, of an arbitrary two-dimensional subspace of a tensor product of
two 2-dimensional Hilbert spaces. We exhibit quantum circuits which can
reproduce the results of any two qubit copying machine of this type. A simple
stochastic generalization (using a ``classical'' random signal) of the copying
machine is also considered. These copying machines provide simple embodiments
of previously proposed optimal eavesdropping schemes for the BB84 and B92
quantum cryptography protocols.Comment: Minor changes. 26 pages RevTex including 7 PS figure
The VLA Galactic Plane Survey
The VLA Galactic Plane Survey (VGPS) is a survey of HI and 21-cm continuum
emission in the Galactic plane between longitude 18 degrees 67 degr. with
latitude coverage from |b| < 1.3 degr. to |b| < 2.3 degr. The survey area was
observed with the Very Large Array (VLA) in 990 pointings. Short-spacing
information for the HI line emission was obtained by additional observations
with the Green Bank Telescope (GBT). HI spectral line images are presented with
a resolution of 1 arcmin x 1 arcmin x 1.56 km/s (FWHM) and rms noise of 2 K per
0.824 km/s channel. Continuum images made from channels without HI line
emission have 1 arcmin (FWHM) resolution. VGPS images are compared with images
from the Canadian Galactic Plane Survey (CGPS) and the Southern Galactic Plane
Survey (SGPS). In general, the agreement between these surveys is impressive,
considering the differences in instrumentation and image processing techniques
used for each survey. The differences between VGPS and CGPS images are small, <
6 K (rms) in channels where the mean HI brightness temperature in the field
exceeds 80 K. A similar degree of consistency is found between the VGPS and
SGPS. The agreement we find between arcminute resolution surveys of the
Galactic plane is a crucial step towards combining these surveys into a single
uniform dataset which covers 90% of the Galactic disk: the International
Galactic Plane Survey (IGPS). The VGPS data will be made available on the World
Wide Web through the Canadian Astronomy Data Centre (CADC).Comment: Accepted for publication in The Astronomical Journal. 41 pages, 13
figures. For information on data release, colour images etc. see
http://www.ras.ucalgary.ca/VGP
- …
