144 research outputs found

    Mean left-right eigenvector self-overlap in the real Ginibre ensemble

    Full text link
    We study analytically the Chalker-Mehlig mean diagonal overlap O(z)\mathcal{O}(z) between left and right eigenvectors associated with a complex eigenvalue zz of N×NN\times N matrices in the real Ginibre ensemble (GinOE). We first derive a general finite NN expression for the mean overlap and then investigate several scaling regimes in the limit NN\rightarrow \infty. While in the generic spectral bulk and edge of the GinOE the limiting expressions for O(z)\mathcal{O}(z) are found to coincide with the known results for the complex Ginibre ensemble (GinUE), in the region of eigenvalue depletion close to the real axis the asymptotic for the GinOE is considerably different. We also study numerically the distribution of diagonal overlaps and conjecture that it is the same in the bulk and at the edge of both the GinOE and GinUE, but essentially different in the depletion region of the GinOE.Comment: 23 pages, 7 figure

    Theory and simulation of quantum photovoltaic devices based on the non-equilibrium Green's function formalism

    Get PDF
    This article reviews the application of the non-equilibrium Green's function formalism to the simulation of novel photovoltaic devices utilizing quantum confinement effects in low dimensional absorber structures. It covers well-known aspects of the fundamental NEGF theory for a system of interacting electrons, photons and phonons with relevance for the simulation of optoelectronic devices and introduces at the same time new approaches to the theoretical description of the elementary processes of photovoltaic device operation, such as photogeneration via coherent excitonic absorption, phonon-mediated indirect optical transitions or non-radiative recombination via defect states. While the description of the theoretical framework is kept as general as possible, two specific prototypical quantum photovoltaic devices, a single quantum well photodiode and a silicon-oxide based superlattice absorber, are used to illustrated the kind of unique insight that numerical simulations based on the theory are able to provide.Comment: 20 pages, 10 figures; invited review pape

    Observation of Photovoltaic Action from Photoacid-Modified Nafion Due to Light-Driven Ion Transport

    Full text link
    Replacing passive ion-exchange membranes, like Nafion, with membranes that use light to drive ion transport would allow membranes in photoelectrochemical technologies to serve in an active role. Toward this, we modified perfluorosulfonic acid ionomer membranes with organic pyrenol-based photoacid dyes to sensitize the membranes to visible light and initiate proton transport. Covalent modification of the membranes was achieved by reacting Nafion sulfonyl fluoride poly(perfluorosulfonyl fluoride) membranes with the photoacid 8-hydroxypyrene-1,3,6-tris(2-aminoethylsulfonamide). The modified membranes were strongly colored and maintained a high selectivity for cations over anions. Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and ion-exchange measurements together provided strong evidence of covalent bond formation between the photoacids and the polymer membranes. Visible-light illumination of the photoacid-modified membranes resulted in a maximum power-producing ionic photoresponse of ∼100 μA/cm2 and ∼1 mV under 40 Suns equivalent excitation with 405 nm light. In comparison, membranes that did not contain photoacids and instead contained ionically associated RuII-polypyridyl coordination compound dyes, which are not photoacids, exhibited little-to-no photoeffects (∼1 μA/cm2). These disparate photocurrents, yet similar yields for nonradiative excited-state decay from the photoacids and the RuII dyes, suggest temperature gradients were not likely the cause of the observed photovoltaic action from photoacid-modified membranes. Moreover, spectral response measurements supported that light absorption by the covalently bound photoacids was required in order to observe photoeffects. These results represent the first demonstration of photovoltaic action from an ion-exchange membrane and offer promise for supplementing the power demands of electrochemical processes with renewable sunlight-driven ion transport
    corecore