44 research outputs found

    Catechol-O-Methyltransferase Expression and 2-Methoxyestradiol Affect Microtubule Dynamics and Modify Steroid Receptor Signaling in Leiomyoma Cells

    Get PDF
    CONTEXT: Development of optimal medicinal treatments of uterine leiomyomas represents a significant challenge. 2-Methoxyestradiol (2ME) is an endogenous estrogen metabolite formed by sequential action of CYP450s and catechol-O-methyltransferase (COMT). Our previous study demonstrated that 2ME is a potent antiproliferative, proapoptotic, antiangiogenic, and collagen synthesis inhibitor in human leiomyomas cells (huLM). OBJECTIVES: Our objectives were to investigate whether COMT expression, by the virtue of 2ME formation, affects the growth of huLM, and to explore the cellular and molecular mechanisms whereby COMT expression or treatment with 2ME affect these cells. RESULTS: Our data demonstrated that E(2)-induced proliferation was less pronounced in cells over-expressing COMT or treated with 2ME (500 nM). This effect on cell proliferation was associated with microtubules stabilization and diminution of estrogen receptor alpha (ERalpha) and progesterone receptor (PR) transcriptional activities, due to shifts in their subcellular localization and sequestration in the cytoplasm. In addition, COMT over expression or treatment with 2ME reduced the expression of hypoxia-inducible factor -1alpha (HIF-1 alpha) and the basal level as well as TNF-alpha-induced aromatase (CYP19) expression. CONCLUSIONS: COMT over expression or treatment with 2ME stabilize microtubules, ameliorates E(2)-induced proliferation, inhibits ERalpha and PR signaling, and reduces HIF-1 alpha and CYP19 expression in human uterine leiomyoma cells. Thus, microtubules are a candidate target for treatment of uterine leiomyomas. In addition, the naturally occurring microtubule-targeting agent 2ME represents a potential new therapeutic for uterine leiomyomas

    A cyclopalladated complex interacts with mitochondrial membrane thiol-groups and induces the apoptotic intrinsic pathway in murine and cisplatin-resistant human tumor cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Systemic therapy for cancer metastatic lesions is difficult and generally renders a poor clinical response. Structural analogs of cisplatin, the most widely used synthetic metal complexes, show toxic side-effects and tumor cell resistance. Recently, palladium complexes with increased stability are being investigated to circumvent these limitations, and a biphosphinic cyclopalladated complex {Pd<sub>2 </sub>[<it>S<sub>(-)</sub></it>C<sup>2</sup>, N-dmpa]<sub>2 </sub>(μ-dppe)Cl<sub>2</sub>} named C7a efficiently controls the subcutaneous development of B16F10-Nex2 murine melanoma in syngeneic mice. Presently, we investigated the melanoma cell killing mechanism induced by C7a, and extended preclinical studies.</p> <p>Methods</p> <p>B16F10-Nex2 cells were treated <it>in vitro </it>with C7a in the presence/absence of DTT, and several parameters related to apoptosis induction were evaluated. Preclinical studies were performed, and mice were endovenously inoculated with B16F10-Nex2 cells, intraperitoneally treated with C7a, and lung metastatic nodules were counted. The cytotoxic effects and the respiratory metabolism were also determined in human tumor cell lines treated <it>in vitro </it>with C7a.</p> <p>Results</p> <p>Cyclopalladated complex interacts with thiol groups on the mitochondrial membrane proteins, causes dissipation of the mitochondrial membrane potential, and induces Bax translocation from the cytosol to mitochondria, colocalizing with a mitochondrial tracker. C7a also induced an increase in cytosolic calcium concentration, mainly from intracellular compartments, and a significant decrease in the ATP levels. Activation of effector caspases, chromatin condensation and DNA degradation, suggested that C7a activates the apoptotic intrinsic pathway in murine melanoma cells. In the preclinical studies, the C7a complex protected against murine metastatic melanoma and induced death in several human tumor cell lineages <it>in vitro</it>, including cisplatin-resistant ones. The mitochondria-dependent cell death was also induced by C7a in human tumor cells.</p> <p>Conclusions</p> <p>The cyclopalladated C7a complex is an effective chemotherapeutic anticancer compound against primary and metastatic murine and human tumors, including cisplatin-resistant cells, inducing apoptotic cell death via the intrinsic pathway.</p

    Identification of specific carbonic anhydrase inhibitors via in situ click chemistry, phage display and synthetic peptide libraries comparison of the methods and structural study

    No full text
    The development of highly active and selective enzyme inhibitors is one of the priorities of medicinal chemistry. Typically, various high throughput screening methods are used to find lead compounds from a large pool of synthetic compounds, and these are further elaborated and structurally refined to achieve the desired properties. In an effort to streamline this complex and laborious process, new selection strategies based on different principles have recently emerged as an alternative. Herein, we compare three such selection strategies with the aim of identifying potent and selective inhibitors of human carbonic anhydrase II. All three approaches, in situ click chemistry, phage display libraries and synthetic peptide libraries, led to the identification of more potent inhibitors when compared to the parent compounds. In addition, one of the inhibitor peptide conjugates identified from the phage libraries showed greater than 100 fold selectivity for the enzyme isoform used for the compound selection. In an effort to rationalize the binding properties of the conjugates, we performed detailed crystallographic and NMR structural analysis, which revealed the structural basis of the compound affinity towards the enzyme and led to the identification of a novel exosite that could be utilized in the development of isoform specific inhibitor
    corecore