27 research outputs found

    Ultrasonic characterization and multiscale analysis for the evaluation of dental implant stability: a sensitivity study Biomedical Signal Processing and Control 42 (2018) 37-44

    Get PDF
    International audienceWith the aim of surgical success, the evaluation of dental implant long-term stability is an important task for dentists. About that, the complexity of the newly formed bone and the complex boundary conditions at the bone-implant interface induce the main difficulties. In this context, for the quantitative evaluation of primary and secondary stabilities of dental implants, ultrasound based techniques have already been proven to be effective. The microstructure, the mechanical properties and the geometry of the bone-implant system affect the ultrasonic response. The aim of this work is to extract relevant information about primary stability from the complex ultrasonic signal obtained from a probe screwed to the implant. To do this, signal processing based on multiscale analysis has been used. The comparison between experimental and numerical results has been carried out, and a correlation has been observed between the multifractal signature and the stability. Furthermore, a sensitivity study has shown that the variation of certain parameters (i.e. central frequency and trabecular bone density) does not lead to a change in the response

    Caractérisation de la Réponse Ultrasonore d'Implant Dentaire : Simulation Numérique et Analyse des Signaux

    Get PDF
    International audienceThe long-term success of a dental implant is related to the properties of the bone-implant interface. It is important to follow the evolution of bone remodeling phenomena around the implant. To date, there is no satisfactory method for tracking physiological and mechanical properties of this area, and it is difficult for clinicians to qualitatively and quantitatively assess the stability of a dental implant. In this context, methods based on ultrasound wave propagation were already successfully used by our group, in the qualitative and quantitative evaluation of primary and secondary stability of dental implants. In this study we perform numerical simulations, using the finite element method, of wave propagation in a dental implant inserted into bone. To simplify the calculations, an axisymmetric geometry is considered. Given the importance of monitoring of peri-prosthetic area, particular attention is given to the boundary conditions between the implant and the bone. The numerical results are compared with those from experimental tests. These results, numerical and experimental, are then analysed with signal processing tools based on multifractal methods. Analysis of the first results shows that these methods are potentially efficient in this case because they can explore and exploit the multi-scale structure of the signal

    Simulation of the mechanical interlocking capacity of a rough bone implant surface during healing

    Full text link
    Background: When an implant is inserted in the bone the healing process starts to osseointegrate the implant by creating new bone that interlocks with the implant. Biomechanical interlocking capacity is commonly evaluated in in vivo experiments. It would be beneficial to find a numerical method to evaluate the interlocking capacity of different surface structures with bone. In the present study, the theoretical interlocking capacity of three different surfaces after different healing times was evaluated by the means of explicit finite element analysis. Methods: The surface topographies of the three surfaces were measured with interferometry and were used to construct a 3D bone-implant model. The implant was subjected to a displacement until failure of the bone-to-implant interface and the maximum force represents the interlocking capacity. Results: The simulated ratios (test/control) seem to agree with the in vivo ratios of Halldin et al. for longer healing times. However the absolute removal torque values are underestimated and do not reach the biomechanical performance found in the study by Halldin et al. which might be a result of unknown mechanical properties of the interface. Conclusion: Finite element analysis is a promising method that might be used prior to an in vivo study to compare the load bearing capacity of the bone-to-implant interface of two surface topographies at longer healing times

    Multimodal assesment of the biomechanical properties of the bone-implant interface

    No full text
    International audienc

    Influence of healing time on the ultrasonic response of the bone-implant interface

    No full text
    International audienceThe aim of the present study is to investigate the effect of bone healing on the ultrasonic response of coin-shaped titanium implants inserted in rabbit tibiae. The ultrasound response of the interface was measured in vitro at 15 MHz after 7 and 13 weeks of healing time. The average value of the ratio r between the amplitudes of the echo of the bone-implant interface and of the water-implant interface was determined. The bone-implant contact (BIC) was measured by histomorphometry and the degree of mineralisation of bone was estimated qualitatively by histologic staining. The significant decrease of the ultrasonic quantitative indicator r (p = 2.10(-4)) vs. healing time (from r = 0.53 to r = 0.49) is explained by (1) the increase of the BIC (from 27% to 69%) and (2) the increase of mineralization of newly formed bone tissue, both phenomena inducing a decrease of the gap of acoustical impedance. (E-mail: [email protected]) (C) 2012 World Federation for Ultrasound in Medicine & Biology
    corecore