150 research outputs found

    How an ancient, salt-tolerant fruit crop, Ficus carica L., copes with salinity: a transcriptome analysis

    Get PDF
    Although Ficus carica L. (fig) is one of the most resistant fruit tree species to salinity, no comprehensive studies are currently available on its molecular responses to salinity. Here we report a transcriptome analysis of F. carica cv. Dottato exposed to 100 mM sodium chloride for 7 weeks, where RNA-seq analysis was performed on leaf samples at 24 and 48 days after the beginning of salinization; a genomederived fig transcriptome was used as a reference. At day 24, 224 transcripts were significantly upregulated and 585 were down-regulated, while at day 48, 409 genes were activated and 285 genes were repressed. Relatively small transcriptome changes were observed after 24 days of salt treatment, showing that fig plants initially tolerate salt stress. However, after an early down-regulation of some cell functions, major transcriptome changes were observed after 48 days of salinity. Seven weeks of 100 mM NaCl dramatically changed the repertoire of expressed genes, leading to activation or reactivation of many cell functions. We also identified salt-regulated genes, some of which had not been previously reported to be involved in plant salinity responses. These genes could be potential targets for the selection of favourable genotypes, through breeding or biotechnology, to improve salt tolerance in fig or other crops

    Cultivar-specific transcriptome prediction and annotation in Ficus carica L.

    Get PDF
    The availability of transcriptomic data sequence is a key step for functional genomics studies. Recently, a repertoire of predicted genes of a Japanese cultivar of fig (Ficus carica L.) was released. Because of the great phenotypic variability that can be found in this species, we decided to study another fig genotype, the Italian cv. Dottato, in order to perform comparative studies between the two cultivars and extend the pan genome of this species. We isolated, sequenced and assembled fig genomic DNA from young fruits of cv. Dottato. Then, putative gene sequences were predicted and annotated. Finally, a comparison was performed between cvs. Dottato and Horaishi predicted transcriptomes. Our data provide a resource (available at the Sequence Read Archive database under SRP109082) to be used for functional genomics of fig, in order to fill the gap of knowledge still existing in this species concerning plant development, defense and adaptation to the environment

    Contribution to the understanding of tribological properties of graphite intercalation compounds with metal chloride

    Get PDF
    Intrinsic tribological properties of lamellar compounds are usually attributed to the presence of van der Waals gaps in their structure through which interlayer interactions are weak. The controlled variation of the distances and interactions between graphene layers by intercalation of electrophilic species in graphite is used in order to explore more deeply the friction reduction properties of low-dimensional compounds. Three graphite intercalation compounds with antimony pentachloride, iron trichloride and aluminium trichloride are studied. Their tribological properties are correlated to their structural parameters, and the interlayer interactions are deduced from ab initio bands structure calculations

    Creedy, Jean Iris

    Get PDF
    The final stage of leaf ontogenesis is represented by senescence, a highly regulated process driven by a sequential cellular breakdown involving, as the first step, chloroplast dismantling with consequent reduction of photosynthetic efficiency. Different processes, such as pigment accumulation, could protect the vulnerable photosynthetic apparatus of senescent leaves. Although several studies have produced transcriptomic data on foliar senescence, just few works have attempted to explain differences in red and green leaves throughout ontogenesis. In this work, a transcriptomic approach was used on green and red leaves of Prunus cerasifera to unveil molecular differences from leaf maturity to senescence. Our analysis revealed a higher gene regulation in red leaves compared to green ones, during leaf transition. Most of the observed DEGs were shared and involved in transcription factor activities, senescing processes and cell wall remodelling. Significant differences were detected in cellular functions: genes related to photosystem I and II were highly down-regulated in the green genotype, whereas transcripts involved in flavonoid biosynthesis, such as UDP glucose-flavonoid-3-O-glucosyltransferase (UFGT) were exclusively up-regulated in red leaves. In addition, cellular functions involved in stress response (glutathione-S-transferase, Pathogen-Related) and sugar metabolism, such as three threalose-6-phosphate synthases, were activated in senescent red leaves. In conclusion, data suggests that P. cerasifera red genotypes can regulate a set of genes and molecular mechanisms that cope with senescence, promoting more advantages during leaf ontogenesis than compared to the green ones
    • …
    corecore